
1. Introduction
 High temperature annealing across TC (T > TC) of hexagonal

manganites h-RMnO3 crystal induces randomly distributed
ferroelectric vortex domains.

 Due to the lattice distortion and trimerization, the vortex domains form
Z2×Z3 type vortex-antivortex pairs, as characterized by (α+, β-, γ+, α-
β+ γ-) and (α+, γ-, β+, α-, γ+, β-) with reversed vorticity.

 Nanoindentation is utilized to create an indent on the surface of as-
grown LuMnO3 single crystal to induce local stress/strain distribution.

 Under the alternately three-fold symmetry Magnus force, the induced
strain gives rise to a rearrangement of the topological ferroelectric
vortex, forming six-fold symmetrical domains.
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2. Manipulation domains by Nanoindentation

3. Manipulation domains by Nanoscratch

4. Strain field of nanoscratch
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 Six-fold symmetrical domains is independent of indenter shape.
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Phase field simulation

 Interaction energy Fint between strain and the vortex-antivortex positions:

 Finite element simulation and random direction nanoindentation
experiments confirm that the induced strain distribution (Magnus force )
is coupled to the hexagonal crystalline lattice.
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 The periodicity of
domain distribution
reduced as increasing
the mechanical load.

 Based on the mechanism of nanoindentation, we design and extend the
vortex domain manipulation to a larger area (nanoscratch).

 Following the tangential Magnus force which pushes the vortex and
antivortex cores in opposite directions, the stripe domains are formed in
the region between the six-fold symmetric distribution axes.

 In the light of nanoscratch strategy, we design antiparallel nanoscratches.
 A mono-chiral topological stripe domain is formed due to elongated

vortex-antivortex pairs.
 Both ends of the stripe domains are still topological protected

ferroelectric vortex with six domains converging.

 The A1 mode (691 cm-1)
Raman shift is lower at
the position closer to
the nanoscratch,
indicating that the
tensile strain is larger.

 The tensile strain of all measured locations is relaxed after the annealing
process, with the A1 mode Raman shift returned to 691 cm-1.

 Compared with the range (20 μm on ab plane) of strain obtained by
Raman, the range of strain is 20 nm along c axis below nanoscratch.

 Strain on ab plane plays a major role in manipulating domain distribution.

We propose and demonstrate a mechanical designable strategy to manipulate alignment of topological domain networks.
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