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Polycrystalline BiFe1−𝑥Mn𝑥O3 films with 𝑥 up to 0.50 are prepared on LaNiO3 buffered surface oxidized Si
substrates. The doped Mn is confirmed to be partially in a +4 valence state. A clear exchange bias effect is
observed with a 3.6 nm Ni81Fe19 layer deposited on the top BiFe1−𝑥Mn𝑥O3 layer, which decreases drastically with
increasing Mn doping concentration and finally to zero when 𝑥 is above 0.20. These results clearly demonstrate
that the exchange bias field comes from the net spins due to the canted antiferromagnetic spin structure in
polycrystalline BiFe1−𝑥Mn𝑥O3 films, which transforms to a collinear antiferromagnetic spin structure when the
Mn doping concentration is larger than 0.20.
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Multiferroic materials which present simultane-
ously ferroelectric and magnetic orderings have at-
tracted extensive interest due to their abundant
physics and potential applications in novel devices.[1]

However, room-temperature multiferroic materials are
very rare. BiFeO3 is an antiferromagnetic-ferroelectric
compound at room temperature (Neel temperature
𝑇N∼643 K and Curie temperature 𝑇C∼1103 K).[2] The
coupling between the antiferromagnetic and ferroelec-
tric orderings has been confirmed experimentally by
the observation of coupled ferroelectric and antiferro-
magnetic domains.[3] At room temperature, it has a
rhombohedral 𝑅3𝑐 perovskite structure with a large
electric polarization (60µC/cm2) pointing along the
elongated [111] direction.[4]

In bulk BiFeO3, the Fe3+ spins order in a G-type
antiferromagnetic structure with a superimposed long-
wavelength (∼62 nm) cycloidal modulation.[5] How-
ever, BiFeO3 thin films might show rather different
properties from those of bulk samples. Many studies
have been devoted to epitaxially grown single crys-
talline BiFeO3 films.[6] The cycloidal spin structure
was destroyed due to the epitaxial strains in single
crystalline BiFeO3 films.[7] Due to the antiferromag-
netic nature of BiFeO3, the most plausible application
in spintronics is suggested to be an antiferromagnetic
pinning layer.[8] The exchange bias has been mostly
reported in epitaxial single crystalline BiFeO3 with
various ferromagnetic layers, such as NiFe, CoFeB,
CoFe, La0.7Sr0.3MnO3, and Fe3O4.[9−18] Due to the
complicated spin structure and magnetoelectric cou-

pling in BiFeO3, the mechanism of the exchange bias is
still under debate. The surface roughness,[11] 109∘ fer-
roelectric domain walls,[12] antiferromagnetic domain
size,[13] canted magnetic moment of BiFeO3 near the
interface due to the interface exchange coupling,[15,16]

spin canting of BiFeO3,[17] etc. have been proposed to
explain the exchange bias. Therefore, further studies
are still needed to clarify the mechanism.

Furthermore, studies on polycrystalline BiFeO3

are still rare.[19,20] In this Letter, the exchange
bias effect in polycrystalline BiFe1−𝑥Mn𝑥O3/Ni81Fe19
(NiFe) bilayers is systematically investigated. The
drastic decrease of exchange bias field with increas-
ing Mn concentration indicates that the exchange
bias field comes from the spin canting due to the
canted antiferromagnetic spin structure in polycrys-
talline BiFe1−𝑥Mn𝑥O3 films, which transforms to a
collinear antiferromagnetic spin structure when 𝑥 is
above 0.20.

The BiFe1−𝑥Mn𝑥O3 (𝑥 = 0, 0.05, 0.1, 0.2,
0.3, 0.5) targets were prepared by the tartaric
acid modified sol-gel method.[21] The bilayer of
BiFe1−𝑥Mn𝑥O3/NiFe (∼80 nm and 3.6 nm in thick-
ness, respectively) magnetic heterostructures were de-
posited on surface oxidized Si (100) substrates by
pulsed laser deposition (PLD) for the oxide lay-
ers and magnetron sputtering for the metallic lay-
ers, as described previously.[20] Before the growth of
BiFe1−𝑥Mn𝑥O3, a LaNiO3 buffer layer (∼30 nm thick)
was first deposited by PLD. Finally, Ta as the capping
layer for preventing the NiFe layer from oxidization
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was deposited. The thickness of the BiFe1−𝑥Mn𝑥O3

films was controlled by the number of laser pulses and
calibrated by a transmission electron microscope. The
crystal structure of the films was examined by x-ray
diffraction (XRD) with Cu K𝛼 radiation. X-ray pho-
toelectron spectroscopy (XPS, ThermoFisher SCIEN-
TIFIC) with an Al K𝛼 x-ray source (ℎ𝜈=1486.6 eV),
and calibrated by the C 1𝑠 line (284.8 eV) binding
energy.[22] Raman measurements were carried out on
a Horiba Jobin Yvon LabRAM HR 800 micro-Raman
spectrometer with 785 nm excitation under air ambi-
ent conditions at room temperature. The magnetic
hysteresis (𝑀–𝐻) loops were measured by a vibrat-
ing sample magnetometer (VSM, Microsense EV7) at
room temperature with an applied field parallel to the
film plane.
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Fig. 1. XRD patterns of (a) LaNiO3/BiFe1−𝑥Mn𝑥O3

(𝑥 = 0, 0.05, 0.10, 0.20, 0.30, 0.50) bilayers. The as-
terisks denote the diffraction peaks from LaNiO3, the im-
purity peak has been indexed to Bi2O3, and the rest are
from BiFeO3. (b) The magnified view in the vicinity of
2𝜃 = 32∘.

Figure 1 shows the XRD patterns of
BiFe1−𝑥Mn𝑥O3 films on SiO2/Si (100) substrates
with LaNiO3 as the buffer layer. The pseudocubic
lattice constant is 3.84Å for LaNiO3

[23] and 3.96Å
for BiFeO3.[24] Thus the polycrystalline BiFeO3 might
be epitaxially grown on the LaNiO3 grains, as indi-
cated in our previous report.[20] Besides the diffrac-
tion peaks corresponding to LaNiO3, all the other
peaks can be indexed to the BiFeO3 of a pure 𝑅3𝑐
structure with 𝑥 increasing from 0 to 0.30. With
further increase of 𝑥 up to 0.50, a strong impurity
peak of Bi2O3 can be clearly observed, though the
remaining peaks can still be indexed to the 𝑅3𝑐 struc-
ture. These results are consistent with the previous
report.[25] Figure 1(b) shows the magnified patterns
around 2𝜃 = 32∘. The (104) and (110) peaks both
shift to higher angles with increasing Mn doping con-
centration, which is consistent with the previous re-

port on bulk BiFe1−𝑥Mn𝑥O3 ceramics.[26] The Mn
2𝑝 XPS spectrum of the BiFe0.95Mn0.05O3 film was
taken to study the valence state of the doped Mn
ions, as shown in Fig. 2(a). The binding energy of Mn
2𝑝3/2 in MnO, Mn2O3 and Mn3O4 are between 641
and 641.5 eV, while that of MnO2 is around 642 eV.[27]

The binding energy of Mn 2𝑝3/2 at 641.7 eV indicates
that the doped Mn ions are partially in a +4 valence
state. The radius of Mn+4 (0.67 Å) is smaller than
that of Fe+3 (0.69 Å),[28] leading to decrease of the
lattice constant. This result indicates that the lat-
tice parameter is changed by Mn substitution and a
gradual phase transition from the rhombohedral dis-
tortion to orthorhombic or tetragonal structure with
the increase of Mn doping content, as reported by
Singh et al.[29] Furthermore, the substituted Mn ions
in a +4 valence state will suppress the O vacancies
due to charge compensation, leading to the effec-
tive suppression of the leakage current and improved
ferroelectricity.[18] Figure 2(b) shows the Fe 2𝑝 XPS
spectrum of Fe. The binding energy of Fe 2𝑝3/2 is at
709.9 eV, suggesting the existence of Fe2+.[27] How-
ever, the decomposition of the Fe 2𝑝3/2 spectrum into
a superposition of symmetric components is ques-
tionable, thus it is complicated to obtain the exact
concentration of Fe2+.[30] The clear observation of the
satellite peaks and the similar curve shape to that
of Fe2O3 indicate that Fe ions are mainly in the +3
valence state.[30]
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Fig. 2. The Mn 2𝑝 (a) and Fe 2𝑝 (b) XPS spectra for the
BiFe0.95Mn0.05O3 film.

Figure 3 shows the Raman spectra of polycrys-
talline BiFe1−𝑥Mn𝑥O3 films. Except for the strong
peak at 520 cm−1 corresponding to the Si substrate,[31]

the clearly resolved Raman modes can all be indexed
to the modes of BiFeO3 with the 𝑅3𝑐 structure.[32]

The A1-1, A1-2 and A1-3 modes are associated with
the Bi-O vibrations. Their peak intensities decrease
with increasing Mn concentration, and nearly disap-
pear with 𝑥 above 0.20. This indicates that a phase
transition may occur when 𝑥 is above 0.20,[33] which
is consistent with the XRD result. Compared with
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the pure BiFeO3 film, two strong and wide bands
can be clearly observed, i.e., one at 620 cm−1 and the
other in the range from 450 cm−1 to 550 cm−1 in the
BiFe1−𝑥Mn𝑥O3 films. These two distinct bands have
been attributed to the distortion of [(Mn, Fe)3+O6]
octahedral.[34]
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Fig. 3. Raman spectra of LaNiO3/BiFe1−𝑥Mn𝑥O3 (𝑥 =
0, 0.05, 0.10, 0.20, 0.30) bilayers.

In order to obtain a sizeable exchange bias, 3.6 nm
NiFe thin films were deposited on the BiFe1−𝑥Mn𝑥O3

films. The corresponding 𝑀–𝐻 loops are shown in
Fig. 4. It can be clearly seen that the central position
of 𝑀–𝐻 loops exhibit a shift (exchange bias field, 𝐻𝐸)
towards a negative field with the increasing Mn dop-
ing concentration up to 0.20. When the substitution
of Mn increases up to 0.30 or even larger, the exchange
bias field vanishes. The inset of Fig. 4 shows the de-
pendences of the exchange bias field and coercivity
on Mn doping concentration. It shows that the ex-
change bias field decreases drastically even with only
5% Mn doping. The coercivity also shows a decrease
with increasing Mn doping concentration. A similar
phenomenon has been reported previously by Allibe
et al. on BiFeO3/CoFeB bilayers, i.e., the exchange
bias field decreases from 51 Oe to 25 Oe and the coer-
civity decreases from 42 Oe to 17 Oe with only 5% Mn
doping.[18]

Generally, the exchange bias was attributed to the
exchange interaction between the pinned uncompen-
sated spins in the antiferromagnet and the magnetic
moments in the ferromagnet, whereas the increase in
the coercivity of the ferromagnet has been related
to some coupling between unpinned uncompensated
spins and ferromagnetic moments.[18] The decrease of
the exchange bias field and coercivity might be at-
tributed to the decrease of the uncompensated spins
at the ferromagnet/antiferromagent interface. BiFeO3

basically has a G-type antiferromagnetic spin arrange-
ment with canted neighboring spins. Lebeugle et

al.[17] have suggested that the uncompensated spins
at the interface is due to the local spin canting in
BiFeO3. It has been further demonstrated by Heron
et al. in the electrical field manipulation of the magne-
tization of a CoFe layer on BiFeO3 film that the spin
of the ferromagnetic layer lies parallel to the net spin
of the canted spins.[35] The neutron diffraction study
shows that Mn doping results in a transformation
from a long-range spiral spin modulation of BiFeO3

to a collinear antiferromagnetic spin structure with
increasing Mn concentration beyond 0.20,[36] which
would lead to the decrease of net spins at the interface.
Based on the above discussions, we can conclude that
the Mn doping will suppress the local spin canting.
Therefore, the net spin at the ferromagnet/BiFeO3

interface will decrease with increasing Mn doping con-
centration, leading to a decrease of the exchange bias
field and coercivity.

-100 -50 0 50 100

-1.0

-0.5

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

c
, 

E
 (

O
e
)

 

 
 =0

(Oe)

N
o
rm

a
li
z
e
d
 

 =0.05  =0.1

 =0.3 =0.2  =0.5

 

Mn concentration 

 Hc

 HE

-3-2-1 0 1 2 3
-1.0
-0.5
0.0
0.5
1.0

 

NiFe

0.55 Oe

0.60 Oe

Fig. 4. 𝑀–𝐻 curves of BiFe1−𝑥Mn𝑥O3/NiFe (𝑥 = 0,
0.05, 0.10, 0.20, 0.30, 0.50) bilayers at room temperature.
The left top inset shows the 𝑀–𝐻 curve of a single NiFe
layer (3.6 nm thick), confirming that the residual field of
the magnet is nearly zero (<0.1Oe). The right bottom in-
set shows the dependences of the exchange bias field and
coercivity on Mn doping concentration.

In conclusion, we have systematically studied the
exchange bias in polycrystalline BiFe1−𝑥Mn𝑥O3/NiFe
bilayers. The XPS results have confirmed that the
doped Mn ions are partially in a +4 valence state. The
exchange bias field decreases drastically with increas-
ing Mn doping concentration and finally to zero when
𝑥 is above 0.20. These results clearly demonstrate
that the interface exchange bias field comes from the
interfacial net spins due to the canted antiferromag-
netic spin structure in polycrystalline BiFe1−𝑥Mn𝑥O3

films. The drastic decrease of exchange bias is due
to the transformation to a collinear antiferromagnetic
spin structure with increasing Mn doping concentra-
tion.
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