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Autferroics, recently proposed as a sister branch of multiferroics, exhibit strong intrinsic magneto-
electricity, but ferroelectricity and magnetism are mutually exclusive rather than coexisting. Here, a general
model is considered based on the Landau theory, to clarify the distinction between multiferroics and
autferroics by qualitative change-rotation in a Landau free energy landscape and in particular phase
mapping. The TiGeSe3 exemplifies a factual material, whose first-principles computed Landau coefficients
predict its autferroicity. Our investigation paves the way for an alternative avenue in the pursuit of
intrinsically strong magnetoelectrics.
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Introduction—The interplay of magnetism and ferro-
electricity is one of the core physical issues of condensed
matter, providing plenty of functionalities for applications.
In the past two decades, multiferroics, with coexisting polar
and magnetic orders in single phases [1–3], have been
extensively studied for their prominent magnetoelectric
(ME) coupling, which allows for the control of electric
dipoles through magnetic fields or the manipulation of
spins through electric fields. The magnetoelectric spin-orbit
devices based on these ME functions bring promising
perspectives for for high-speed, low-power information
processing [4].
However, to some degree,magnetismand polarity intrinsi-

cally suppress each other, preventing ideal magnetoelectric-
ity in multiferroics, thus it always results in a trade-off
between magnetism and polarity, as well as their coupling.
For example, in type-I multiferroics (e.g., BiFeO3) [5], ME
couplings are weak despite strong ferroelectricity, while in
type-II multiferroics (e.g., TbMnO3) [6], polarizations are
faint but fully switchable bymagnetic fields. Such a trade-off
seems unavoidable and almost impossible to be perfectly
resolved in the framework of multiferroics.
Very recently, a new kind of hybrid ferroicity was

proposed as a sister branch of multiferroics, dubbed alter-
ferroicity [7]. To stay clear of the newly emerged field of
altermagnetism, the term we use henceforth is autferroicity,
prefix aut being Latin for “or, either.” In autferroics, ferro-
electricity and magnetism are mutually exclusive rather than
coexisting, yet they can be controlled by external fields. The
first candidate material is a transition-metal trichalcogenide
TiGe1−xSnxTe3 [7]. In this two-dimensional monolayer,

ferroelectric and antiferromagnetic states can be (meta)stable
and compete with each other, leading to the so-called
seesaw-type magnetoelectricity [7]. In fact, similar ferro-
electric-antiferromagnetic competitions and transitions have
also been theoretically predicted in CrPS3 [8] and exper-
imentally reported in ½1 − x�ðCa0.6Sr0.4Þ1.15Tb1.85Fe2O7 −
½x�Ca3Ti2O7 series [9], although the concept of autferroicity
had not been introduced at that time. As an emerging topic,
autferroicity is much less known than multiferroicity.
In this Letter, a general and minimal model for autfer-

roicity is considered based on the Landau theory. By taking
the exclusion term in the Landau free energy expression,
this model can describe the magnetoelectricity of autfer-
roics elegantly. Then, by employing density functional
theory (DFT) calculations, TiGeSe3 and TiSnSe3 mono-
layer are selected as the benchmark of our theory,
where the ME coupling strengths are quantitatively calcu-
lated. According to the Landau theory, the TiGeSe3
monolayer potentially exhibits antiferroicity, whereas
TiSnSe3 does not.
Model—According to the Landau theory, the canonical

expression of temperature (T) dependent magnetoelectric
Landau free energy (F) can be written as [10,11]

FðP;M;TÞ ¼
�
−a

�
1−

T
TP

�
P2 þ bP4

�

þ
�
−d

�
1−

T
TM

�
M2 þ eM4

�
þ cP2M2; ð1Þ

where P and M are order parameters (OPs) for ferroelec-
tricity and ferromagnetism, respectively. TP and TM are the
transition temperatures for independent ferroelectricity
and ferromagnetism, respectively. In fact, the first (second)
two terms are canonical Landau-type free energy of ferro-
electricity (ferromagnetism). All the coefficients are
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positive, leading to the double-well energy curves as a
function of P or M below their transition temperatures.
For antiferromagnetism, it is straightforward to formally
replace M with the antiferromagnetic order parameter L.
Thus, in the following, only the symbol M is used without
loss of generality. The last term is the magnetoelectric
coupling energy, where c is the coupling strength. Note that
such a biquadratic term generally works for ferroelectro-
magnets of all symmetries, while other lower order cou-
pling terms may exist but are specialized for some specific
systems like type-II multiferroics or hybrid improper
ferroelectrics [see End Matter (EM) for details] [1,12–18].
Zero-T results—Obviously, if c ¼ 0, the ferroelectricity

and magnetism are entirely decoupled. Then the lowest
Landau free energy can be obtained from ∂F=∂M ¼ 0

and ∂F=∂P ¼ 0, leading to nonzero equilibrium Ps ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiða=2bÞp
and Ms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd=2eÞp
at T ¼ 0. With a small

negative c, Eq. 1 was frequently used to describe conven-
tional multiferroic systems successfully [19–22].
Here we focus on positive c, corresponding to the

exclusion between polarity and magnetism, which can
describe the autferroicity (and widely exists in multifer-
roicity). First, the ground state at T ¼ 0 is discussed. With a
positive c, the equilibrium Me or Pe can be obtained
straightforwardly as follows:

Me ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − cP2

2e

r
or Pe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − cM2

2b

r
: ð2Þ

By substituting Eq. 2 into Eq. 1, the Landau free energy
becomes

FðP;MeÞ ¼ −
d2

4e
þ
�
−aþ dc

2e

�
P2 þ

�
b −

c2

4e

�
P4;

FðPe;MÞ ¼ −
a2

4b
þ
�
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2b
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M2 þ
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e −

c2

4b

�
M4; ð3Þ

where the depolarized and demagnetized effects from the
ME term are clear.
Let us analyze the magnetoelectric behavior with

gradually increasing c from 0. For case 1, when c <
2bd=a≡ cm and c < 2ae=d≡ cp, the system works

as a multiferroic, with spontaneous polarization Ps ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dðcp − cÞ�=ðcmcp − c2Þ

q
and magnetization Ms ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½aðcm − cÞ�=ðcmcp − c2Þ
q

, i.e., a type-I multiferroic sol-

ution with independent origins of P and M [23].
In all of following cases, we assume cm > cp if not noted

explicitly, while the opposite condition cm < cp will lead to
symmetric results by interchanging the OPs M and P.
Furthermore, both Ps and Ms have been normalized
to 1. For case 2, if cp < c < ffiffiffiffiffiffiffiffiffifficmcp

p , the condition for
spontaneous nonzero polarization cannot be satisfied,

and then the solution can only be [Ps ¼ 0, Ms ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½aðcm−cÞ�=ðcmcp−c2Þ

q
]. For case 3, if ffiffiffiffiffiffiffiffiffifficmcp

p <c<cm,

the coefficients of P4 and M4 in Eqs. 3 become negative,
which lead to diverging Ps and Ms. In this case, Eqs. 3
are invalid. The solution for Eq. 1 remains the same as
for case 2. Thus, cases 2 and 3 can be unified as
cp < c < cm, leading to a pure magnetic phase. For
case 4, if c > cm, the solution for Eq. 1 becomes

[Ps ¼ 0, Ms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½aðcm − cÞ�=ðcmcp − c2Þ

q
] or [Ms ¼ 0,

Ps¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dðcp−cÞ�=ðcmcp−c2Þ

q
], i.e., an autferroic solution.

A similar analysis can be done for negative c. For case 5,
if −c < ffiffiffiffiffiffiffiffiffifficmcp

p , the result is similar to the aforementioned
case 1, i.e., a multiferroic solution. For case 6,
−c > ffiffiffiffiffiffiffiffiffifficmcp

p , Eq. 1 becomes inadequate to describe
ferroics, while higher order P6 andM6 terms are mandatory
to avoid diverging Ps and Ms. The ground state phase
diagram and corresponding evolution of OPs are summa-
rized in Fig. 1(a). In this sense, the autferroicity naturally
owns stronger ME coupling than the type-I multiferroics,
characterized by coefficient c.
Typical energy landscapes FðP;MÞ with various c are

distinct. When c has a small value (regardless of being
negative or positive), the energy landscape shows isodepth

FIG. 1. Ground state solution of Eq. 1. (a) Phase diagram as a
function of ME coefficient c. MF: (type I) multiferroic phase; SF:
single-ferroic phase (i.e., magnetic if cm > cp); AF: autferroic
phase. The order parameters (OPs) are shown as curves. In the
autferroic region, the dashed lines denote the alternative sol-
utions, (Ps, 0) or (0, Ms), which cannot exist simultaneously. If
cm < cp, the curves of M and P are interchanged, and the SF
region is ferroelectric. (b)–(d) Typical energy landscapes
FðP;MÞ for (b) MF, (c) SF, and (d) AF. EB in (d) indicates
the energy barrier from (�Ps, 0) to (0, �Ms).
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quadruple wells at (�Ps, �Ms) [Fig. 1(b)], as in the type-I
multiferroics with coexisting ferroic orders. In the middle
positive c region, one ferroic order (i.e., P if cm > cp or M
if cm < cp) is completely suppressed, leading to double
energy wells [Fig. 1(c)]. When the positive c is large
enough, the energy landscape of autferroic phase restores
quadruple wells in Fig. 1(d), but at positions (�Ps, 0) and
(0, �Ms) rotated by π=4 relative to Fig. 1(b).
Another fact for autferroic is that its quadruple wells are

double-degenerated in energy. If cm > cp ðcm < cpÞ, the
magnetic (ferroelectric) state is more favored. There is an
energy barrier (EB) between neighboring (�Ps, 0) and (0,
�Ms) wells [Fig. 1(d)], making the ferroelectric (magnetic)
phase a metastable one. This energy barrier is determined
by ME coupling strength, as derived in Supplemental
Material (SM) [24].
Finite-T results—At finite temperatures, the coefficients

cm and cp become

CMðTÞ ¼ cmγðTÞ; CPðTÞ ¼ cp=γðTÞ; ð4Þ

where γðTÞ ¼ ½TPðTM − TÞ=TMðTP − TÞ� is the temper-
ature-dependent dimensionless factor [γð0Þ ¼ 1].
When T < TP < TM [Fig. 2(a)], the finite temperature

leads to γðTÞ > 1. Here, three aforementioned ground
states are analyzed. (1) For the autferroic ground state,
i.e., c > cm > cp, it is natural to expect a critical temper-
ature T�

P between 0 and TP to satisfy the condition
CPðT�

PÞ < c ¼ CMðT�
PÞ. When T�

P < T < TM, the system
is no longer autferroic, but becomes single-ferroic with
only magnetic order active. (2) For the single-ferroic (i.e.,
magnetic) ground state, i.e., cp < c < cm, the system does
not have a transition point when T < TP. (3) For the

multiferroic ground state, i.e., c < cp < cm, there must be a
T�
M to satisfy CPðT�

MÞ ¼ c < CMðT�
MÞ. Thus the system

becomes magnetic only when T > T�
M. Finally, all three

become nonferroic when T > TM.
The T < TM < TP case is more complex [Fig. 2(b)], as

0 < γðTÞ < 1. This case exhibits several different behav-
iors compared to the T < TP < TM situation. (1) For the
autferroic case, CPðTÞ will go beyond c at T�

M; then the
system becomes ferroelectric state (T�

M < T < TP). (2) For
the single-ferroic case, two intermediate phases are iden-
tified: multiferroic or autferroic if c is relatively small or
large, respectively, before the emerging of the ferroelectric
phase. (3) For the multiferroic ground state, the system will
become magnetic only when T > T�

M. Finally, all states
become nonferroic when T > TP.
These two phase diagrams are obtained at the mean field

level without thermal fluctuations. In real systems, the
transition temperatures will be affected by fluctuations,
especially for metastable phases. Here, four cases I–IV as
indicated in Figs. 2(a)–2(b) are checked using Monte Carlo
(MC) methods. Method details can be found in EM4, EM5,
and SM [24].
For case I [Fig. 2(c)], MC results indeed confirm that

system is type-I multiferroic below T�
P and becomes a

magnetic state between T�
P and TM. Despite these quali-

tative agreements, the T�
P obtained in our MC simulation is

slightly lower than the analytical expectation. This is
reasonable since, in the single-ferroic region, there remains
local fluctuation of the ferroelectric order (i.e., not exactly
zero as in the analytical solution), suppressing local
magnetism via the ME coupling.
For case II [Fig. 2(d)], our MC simulations show a sharp

transition from the initial (metastable) ferroelectric to

FIG. 2. Solutions of Eq. 1 at finite temperatures. (a)–(b) Analytic phase diagrams in the c-T parameter space. NF: nonferroic state; SF-
M (SF-P): single-ferroic magnetic (ferroelectric) phase. Phase boundaries are CPðT�

PÞ (red) and CMðT�
MÞ (black). (a) TM > TP;

(b) TP > TM. (c)–(f) MC results for four selected cases I–IV, as indicated in (a)–(b). Their corresponding coefficients are listed in Table
S1. Insets: enlarged views around the transitions.
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magnetic state at T� much lower than estimated TP.
This T� is primarily due to the small EB between the
ferroelectric and magnetic phases in autferroics [Fig. 1(d)],
which cannot beat the thermal fluctuation. A similar
situation is also found in case III [Fig. 2(e)], where the
temperature range for the intermediate autferroic region
(52–59 K) is much narrower than the analytical 20–88 K,
namely, the effective working temperature window for
zero-field autferroicity becomes shrunken due to the fact
of metastability and thermal fluctuation. Without the
metastability (e.g., case IV), the temperature window
for the intermediate multiferroic phase is much broader
[35–72 K in Fig. 2(f)], slightly narrower than the analytical
value (27–84 K).
Material benchmarks—To verify above model results,

the TiGeSe3 monolayer is studied as a benchmark, which
was predicted to exhibit both magnetic and ferroelectric
orders [7]. In TiGeSe3, Ti ions form a honeycomb lattice
and each Ti is surrounded by six Se ions, shown in
Fig. 3(a), forming a TiSe6 triangular antiprism. Due to
the trigonal crystal field, Ti’s 3d orbitals are split into three
groups [Fig. 3(a)]. Our DFT calculations confirm that
its magnetic ground state is stripy-type antiferromagnet
(S-AFM); see Fig. S2(a) [7,24].
Besides S-AFM, the Ge-Ge pair in the TiGeSe3 mono-

layer would move along the out-of-plane direction
[Fig. 3(a)], driven by the soften polar mode. Taking the
nonpolar parent phase as a reference, the DFT energy (E)

versus displacement λ [defined in Fig. 3(a)] reveals a typical
ferroelectric double-well potential [Fig. 3(b)], where the
switching energy barrier EP is ∼200 meV=f:u: [24]. The
polarization in the TiGeSe3 monolayer mainly originates
from Ge’s lone pair electrons [Fig. 3(a)]. Notably, these lone
pair electrons, with Se sites acting as bridges, induce a
valence change from Ti3þ to Ti4þ, as identified in the electric
structures [Figs. 3(c)–3(d)]. In Fig. 3(c), the dz2 orbital
contributes to valence bands in the S-AFM phase (3d1),
which is empty (3d0) in the ferroelectric phase [Fig. 3(d)].
Hence, ferroelectric and magnetic phases in TiGeSe3 are
mutually exclusive.
Equation 1 can be utilized to further identify the ferroic

phases of the TiGeSe3 monolayer at 0 K, specifically
distinguishing between the single-ferroic and autoferroic
phases. The ferroelectric and magnetic Landau parameters
are extracted from DFT energy calculations of selected
configurations (λ,M), with a detailed description in EM6.
To quantify the ME coefficient of the TiGeSe3 monolayer, a
series of small displacements (λ) are artificially introduced
into the S-AFM phase, where the spontaneous magnetic
moments are fixed [L ¼ Ls ¼ ðMs↑ −Ms↓Þ=2, see
SM8 [24] ] in our DFT calculation. The energy contribution
from the magnetoelectric interaction term is ΔFðλÞ ¼
Ftot − ð−ãλ2 þ b̃λ4Þ − ð−dL2

s þ eL4
sÞ ¼ c̃λ2L2

s , where ã ¼
aZ�

λ
−2 and b̃ ¼ bZ�

λ
−4. Here, Z�

λ is the magnitude of Born
effective charge along the displacement λ direction. Hence,
the ΔFðλÞ as a function of λ follows a parabolic curve
[Fig. 5(a)], allowing the ME coefficient c̃ (or c ¼ c̃Z�

λ
2) to

be obtained by fitting the parabolic coefficient kc ≡ c̃L2
s .

The fitted c̃ reaches ∼890 meV=ðμBÅÞ2, satisfying the
autferroic requirement of c̃p < c̃m < c̃ (see Table I). In this
scenario, the S-AFM phase serves as the ground state,
while the ferroelectric phase is metastable. To verify this
state metastability in TiGeSe3, we recalculated the structure
with a smaller ferroelectric displacement (e.g., 0.8λs, where
λs is the stable spontaneous atomic displacement) in DFT
and initialized with a small magnetic moment. After full
lattice relaxation, the system returned to the pure ferro-
electric phase, indicating that the pure ferroelectric state is
not an energy saddle point. Hence, the TiGeSe3 monolayer
exhibits autferroicity, corresponding to case II in Fig. 2(a),
which originates from the strong spin-phonon coupling.
Based on our MC simulations, the transition from the

FIG. 3. Benchmark of TiGeSe3 monolayer. (a) Upper: structure
of TiGeSe3 monolayer and out-of-plane Ge-Ge pair displacement
(λ). Lower: band splitting of Ti’s 3d orbitals and stripy-type
antiferromagnetic (S-AFM) structure. (b) Energy (E) per f.u.
as a function of λ. EP: energy barrier. Dots: DFT-computed
energies. Insets: paraelectric and ferroelectric phases with �P.
(c)–(d) Comparison between band structures for (c) S-AFM and
(d) ferroelectric (FE) state. Blue: projected Ti’s 3d orbitals.

TABLE I. Fitted parameters ã ðmeV=Å2Þ, b̃ ðmeV=Å4Þ,
d ðmeV=μB2Þ, e ðmeV=μB4Þ, and c̃ ½meV=ðμBÅÞ2�. Calculated
Energy barrier EB ðmeV/f.u.) and autferroic transition temper-
ature TC ðKÞ.

ã b̃ d e c̃p c̃m c̃ EB TC

TiGeSe3 390 190 520 260 390 520 890 44 63
TiSnSe3 900 360 60 30 900 40 740 0 0
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autferroic state to the magnetic state occurs at 63 K for
TiGeSe3 [Fig. 4(a)], close to the estimate from Landau
equation T�

M ¼ 59 K.
For comparison, we also calculate its sister member

TiSnSe3 monolayer. The TiSnSe3 monolayer exhibits
behavior similar to that of TiGeSe3; however, in this case,
the ferroelectric phase has a lower energy than the ground
magnetic state (zigzag-type AFM, Z-AFM). Our fitted
results show that TiSnSe3 should not exhibit autferroicity,
as it satisfies c̃m < c̃ < c̃p (Table I), where the ferroelectric
phase is stable, and the Z-AFM state corresponds to an
energy saddle point. These results can also be further
examined through DFT calculations: a series of small
ferroelectric displacements λ artificially introduced into
the Z-AFM phase of TiSnSe3, with the magnetic moments
fixed at L ¼ Ls. The resulting total energy F vs λ curve
clearly indicates that the pure magnetic state is at an energy
saddle point [Fig. 4(b)]. Therefore, the TiSnSe3 monolayer
is a single-ferroic material, exhibiting only a stable ferro-
electric phase.
In summary, a unified Landau theory model is proposed

to describe the mutual exclusion between magnetic and
ferroelectric orders in autferroics. In the phase diagram, the
autferroic phase appears in the region with stronger mag-
netoelectric exclusive coupling. Both the ground state and
finite temperature effects are demonstrated, with concrete
materials as benchmarks. Characteristic of autferroics, the
energy barriers separating �Ms (�Ps) are relatively low,
promoting rapid thermal fluctuations, which is beneficial to
autferroic-based random number generation devices [35,36].
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End Matter

EM1: More details of exclusion of bilinear
magnetoelectric coupling term in Eq. 1.—The Landau
free energy is a scalar, which should be time-reversal
invariant and space-inversion invariant. As a result, a
bilinear magnetoelectric coupling term M · P (or M × P)
is generally not allowed as symmetry violating.
Although in some cases with special magnetic point
groups, the bilinear magnetoelectric term seems to be
allowed [37,38], the fact is that their coefficients of
bilinear magnetoelectric term are not regular scalars but

vectors or tensors, which break both the time-reversal
and space-inversion symmetries. Then the physical
information of magnetism/space is already hidden in
such coefficients. For example, the magnetoelectric term
can be like L · ðM × PÞ [39], where the staggered order
parameter L representing an antiferromagnetic
background is used to preserve inversion and time-
reversal symmetry. Then if one assumes invariant L, it
can be simplified as (M × P) nominally, although in fact
here M is not a primary order parameter anymore. In a
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primary study here, our form of Landau free energy is
intended for the most generic cases, with M and P as
order parameters and scalar coefficients.

EM2: Difference between multiferroics and
autferroics—In the multiferroic systems [19–22],
ferroelectricity and magnetism coexist within the same
material due to their attractive or weakly repulsive
biquadratic magnetoelectric coupling. In contrast, in the
present case (autferroics), the strongly repulsive
biquadratic magnetoelectric coupling eliminates the
coexistence of ferroelectricity and magnetism. Thus,
autferroics represent a unique material family and can be
regarded as a sister branch of the multiferroic family. As
clearly illustrated in Fig. 1(a), the autferroic region is
isolated from the multiferroic region by the middle
single-ferroic one.

EM3: Difference between single-ferroics and
autferroics—Generally, Eq. 1 exhibits four solutions
[22], i.e, nonferroic (P ¼ 0, M ¼ 0), magnetic (P ¼ 0,
M ≠ 0), ferroelectric (P ≠ 0, M ¼ 0), and multiferroic
(P ≠ 0, M ≠ 0). However, it should be noted that only
(P ¼ 0, M ≠ 0) or (P ≠ 0, M ¼ 0) is not enough to
define autferroics. For example, in the single-ferroic
region [i.e., the middle region between multiferroic and
autferroic of Fig. 1(a)], these two solutions can exist:
one as the ground state and another as an energetic
saddle point, as shown in Fig. 1(c). However, (P ≠ 0,
M ¼ 0) and (P ¼ 0, M ≠ 0) solutions in autferroics are
(meta)stable with isolated energy wells for each state
and energy barriers between them [Fig. 1(d)]. Without
these energy wells and energy barriers, (P ≠ 0, M ¼ 0)
and (P ¼ 0, M ≠ 0) can only be considered as single-
ferroics at most, instead of autferroics. A key physical
difference between the single-ferroic and autferroic
solutions is the magnetoelectric response. For example,
an electric field can switch the phase of autferroics
between the ferroelectric state and magnetic state [24],
while for the single-ferroic one the switching can only
be done between þP and −P.

EM4: Ginzburg-Landau theory for MC simulation—
Although the Heisenberg model can deal with the
magnetic transition in multiferroics, this model cannot
deal with the phase transition in autferroics. The most
important property in autferroicity is the switching
between ferroelectricity and magnetism. Hence, we used
the standard Landau-type free energy terms for
magnetism. Here, the Ginzburg-Landau theory is used in
our MC simulation.
Then Eq. 1 is turned into two individual lattice sites as

follows [11]:

F ¼
X
i

�
−aP2

i þ bP4
i

�þX
hi;ji

υPðPi − PjÞ2

þ
X
k

�
−dM2

k þ eM4
k

�þX
hk;li

υMðMk −MlÞ2

þ
X
hi;ki

cP2
i M

2
k: ðD1Þ

Here, the local site magnetic energy and polar energy (the
1st and 3rd terms in Eq. D1, respectively) are the standard
Landau-type free energy terms (Eq. 1), which leads to
independent magnetization (Ms or −Ms) and polarization
(Ps or −Ps). Similar to the Heisenberg model, directional
shifts of spin at neighboring sites induce energy fluctua-
tions (the 2nd term), described by the Ginzburg term, i.e.,
υMð∇MÞ2. The coefficient υM represents the magnetic
stiffness (similar to the nearest-neighbor magnetic coupling
J in the Heisenberg model [24]). As a beginning model for
autferroicity, here the order parameters (M and P) are
simplified as scalars, as done in standard mean field
approximation.

EM5: Form of magnetoelectric coupling in
autferrocity—Taking the TiGeSe3 monolayer as a typical
example, ferroelectricity and magnetism originate from
Ge-Ge and Ti honeycomb lattices, respectively. There-
fore, in our MC simulation, we adopted two sublattices
(ferroelectric triangle þ magnetic honeycomb) with the
nested geometry as in TiGeSe3. Thus, for each Ti site,
it has three ferroelectric neighboring sites, as shown in
Fig. 5. The biquadratic magnetoelectric coupling term in
Eq. D1 quantitatively accounts for the mutual exclusivity
between these ferroelectric and magnetic lattices. Here
the magnetoelectric interactions are represented by the
coupling term between these two sublattices, expressed
as P2

i M
2
k, which is summed over nearest-neighbors

between ferroelectric sites i and magnetic site k [Fig. 5(a)
inset]. Obviously, this coupling term in autferroics does

FIG. 5. (a) Fitting of ME coefficient in TiGeSe3. ΔF as a
function of λ in the S-AFM state. Inset: illustration of the
magnetoelectric interaction between the ferroelectric Pi lattice
and the magnetic Mk lattice as used in Eq. D1. (b) Fitting of
dipole-dipole interaction in the TiGeSe3 monolayer using the
mean field theory, i.e., the coefficient υP. The black points are the
DFT-calculated energy of different displacements λi − hλji.
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not describe on site interactions but rather interactions
between the ferroelectric and magnetic lattices.

EM6: Extracting the Landau parameters from DFT
calculations—(a) T ¼ 0 K case. The Ginzburg terms in
Eq. D1 are absent (∇M ¼ 0 and ∇P ¼ 0). Using the
pure ferroelectric phase (nonmagnetic phase, M ¼ 0),
the ferroelectric Landau parameters a and b (ã and b̃)
are obtained by fitting the ferroelectric double-well
potential [Fig. 3(b)], which is obtained from DFT
calculations. Similarly, the magnetic Landau parameters
d and e are extracted from a pure magnetic phase
(P ¼ 0). Unlike ferroelectric polarization, the single
atom’s magnitude of magnetic moment cannot
continuously vary from 0 to Ms. Here, taking the high
symmetry phase (P ¼ 0, M ¼ 0) as a reference, the
energy difference between the (P ¼ 0, M ¼ 0) and
(P ¼ 0, M ¼ Ms) phases can be calculated in the DFT.
We can identify the energy difference per magnetic atom
ΔEM ¼ −dM2

s þ eM4
s and the magnitude of magnetic

moment Ms ¼
ffiffiffiffiffiffiffiffiffiffi
d=2e

p
. Hence, the values of d and e are

calculated by solving these equations [40].

(b) T ≠ 0 K case. At the finite temperature, the Ginzburg
terms, i.e., υMð∇MÞ2 for magnetism and υPð∇PÞ2 for
ferroelectricity, are included in Eq. D1 to account for
thermal fluctuations. It is important to note that Ginzburg
terms only affect the transition temperature, such as the
transition from an autferroic to a single-ferroic phase. In
MC simulations, the coefficient υM in Eq. D1 is calculated
via DFT calculations of various pure magnetic structures,
e.g., ferromagnetic and different antiferromagnetic phases,
following a similar approach to calculating the magnetic
coupling coefficient J in the Heisenberg model. In the
TiGeSe3 monolayer, for pure magnetic transition, the
Ginzburg-Landau theory leads to similar TC to that
obtained using the Heisenberg model [Figs. S4(a) and
S2(b)]. For ferroelectric υP coefficient, we calculated
energy difference (ΔE) as a function of Pi − hPji (or
λi − hλji) using DFT within the standard mean field
approximation, which follows a quadratic relationship
[Fig. 5(b) for the TiGeSe3 monolayer with ferroelectric
activity (Ti4þ state)]. The coefficient υP is then obtained by
fitting the quadratic term.
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