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Stabilizing exotic quantum phases of matter, e.g., spin liquid, is an attractive topic in condensed matter.
Here, by a Monte Carlo study of a two-orbital spin-fermion model on a honeycomb lattice, we show that the
cooperative effects of the orbital degeneracy of itinerant electrons and the exchange interaction of localized spins
can significantly suppress both ferromagnetic and antiferromagnetic orders by generating topological defects,
and give rise to an intermediate spin-liquid state via continuous phase transitions. This phase competition can
also be achieved by tuning the electron filling. These results shed light on realizing spin liquids on geometrically

nonfrustrated lattices.
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I. INTRODUCTION

The search for exotic magnetically disordered ground
states, including both classical and quantum spin liquids (SLs)
[1-5], is an ongoing theme in the condensed matter commu-
nity, and tremendous progress has been made in frustrated
spin systems [6,7]. However, besides several well-known ex-
amples, such as the Kitaev model on the honeycomb lattice
[8], SL states in microscopic spin models relevant to real
materials are yet to be justified. Meanwhile, this motivates
another route in searching for SLs—by examining strongly
correlated systems with itinerant electrons, for example, in
Hubbard models in proximity to the Mott transition, or peri-
odic Anderson models in certain limits [9—14]. Along this line,
efforts have been made by considering systems with multiple
orbitals and higher SU(N) (N > 2) symmetries [15-21].

Although appealing, including itinerant electrons in the
model poses great challenges for unbiased numerical stud-
ies: Quantum Monte Carlo (MC) simulations would suffer a
severe sign problem [22] when fermions of the system are
away from half filling and density matrix renormalization
group and/or tensor network methods are limited by the rapid
increase of entanglement entropy of systems in spatial dimen-
sions higher than one [23]. Consequently, the stabilization of
SLs in these systems remains under debate [24-33], which
motivates us to further look for the key ingredients to real-
izing these highly nontrivial states of matter in models with
coupling between localized magnetic moments and itinerant
electrons.
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The Kondo lattice model (KLM) provides the simplest
picture for describing the interplay between itinerant elec-
trons and local magnetic moments [34-39]. In recent years,
SL phases in KLM have been proposed, which have at-
tracted a lot of attention [40—46]. The competition between
Kondo screening and magnetic correlations mediated by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions serves
as an additional source of quantum fluctuations that may cause
deconfinement of spinons, novel quantum criticality, and non-
Fermi-liquid behavior [47-54]. With including the orbital
degree of freedom, there are several well-established results
that suggest orbital degeneracy may play a role similar to
spin frustration and give rise to possible fractionalized Fermi
liquids [49] and SL-like behavior [46]. Even when treating the
local magnetic moments classically, highly nontrivial mag-
netic states can emerge, including a spiral antiferromagnet,
skyrmion lattice (SkX) [55], as well as a disordered coopera-
tive paramagnet [56].

In this paper, we consider a reduced form of the Kondo-
Heisenberg model by taking the local moments as classical
spins, which is often referred to as the spin-fermion model
[57-60]. By studying a two-orbital spin-fermion model on a
honeycomb lattice (see Fig. 1), we show the interplay between
the orbital degeneracy of itinerant electrons and the antiferro-
magnetic (AFM) superexchange between neighboring spins
can significantly suppress long-range magnetic orders by in-
ducing various topological defects (TDs), driving the system
into a SL state via continuous phase transitions. Remarkably,
the SL state is stabilized within a certain regime of the phase
diagram by tuning with either exchange coupling or electron
filling. Our results suggest another route in realizing SLs
in correlated multiorbital systems on geometrically nonfrus-
trated lattices.
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FIG. 1. Sketch of the two-orbital spin-fermion model on a bilayer
honeycomb lattice. Itinerant electrons described by a two-orbital
Weyl semimetal model reside on the top layer of the lattice, with
the hopping amplitude ¢. They are coupled to local spins (the bottom
layer) via a ferromagnetic Kondo coupling Jx . In the strong-coupling
limit (|Jx| > [¢]), spins of itinerant electrons are aligned by local
spins and their hopping integrals are renormalized by an emergent
Berry phase €2;; at each bond. The neighboring spins are coupled
with antiferromagnetic J.

II. MODEL AND METHOD

The Hamiltonian of the spin-fermion model we consider in
this work reads as

0,0'={a,b}

o
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where c}m creates an itinerant electron in orbital o with

spin o at site i of a honeycomb lattice. We consider a
two-orbital model whose band structure describes a Weyl
semimetal, and values of the nearest-neighboring hopping
parameters t"“ of this model can be found in Ref. [61]. S;
is the local spm operator, which is treated here as a classi-
cal O(3) vector. J refers to the Heisenberg antiferromagnetic
superexchange, and A, < O refers to an easy-axis single-ion
anisotropy. Jx < 0 is a ferromagnetic Kondo coupling. As a
generally accepted approximation, |Jx| > [f], then the spin
of the itinerant electron is enforced to be in parallel to the
local spin at that site. This leads to renormalization of the hop-
ping integral flojo Q; jtl”j" by a bond-dependent Berry phase
2;;, which is detailed in the Supplemental Material (SM)
[62].

The Hamiltonian in Eq. (1) can be solved by combining
MC and exact diagonalization techniques [60,61]. Within a
fixed classical spin configuration H({S;}), it can be repre-
sented by a 2N x 2N matrix where the fermion degree of
freedom can be easily traced out by direct diagonalization by
a standard library routine. After this procedure, the effective
action is left purely classical and then the spin configuration
can be stochastically sampled by Metropolis algorithms. Dur-
ing every MC evaluation, the diagonalization is performed
beforehand. In the numerical calculation, we take one hopping
parameter > = 1 as the energy scale. MC simulations are
performed on lattices with a linear dimension from L = 6 to
L = 16 (total number of sites N = 2L?), with periodic bound-
ary conditions.
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FIG. 2. (a) Evolution of the total energy E as a function of
superexchange coupling J at quarter filling at (near) zero temper-
ature. Dots: from MC simulations at extremely low temperature
(T =0.002). Dashed lines: for perfect FM and NAFM orders at
T = 0. (b) The corresponding magnetic ground state phase diagram,
determined from the evolution of FM 7¢ and the normalized static
spin structure factor of the NAFM state. By increasing J, the ground
state experiences a series of continuous phase transitions from the
FM state first to a SL, then to a NAFM state. In either the FM or the
NAFM phase, when close to the transition point to the SL phase,
topological defects (TDs) of spin textures emerge which disturb
the corresponding magnetic order. (c)—(e) Typical MC snapshots of
spin textures at 7 = 0.002, in the FM (J = 0.15), SL (J = 0.50),
and NAFM (J = 1.12) regions, respectively. In (c) the TDs are
skyrmion-antiskyrmion pairs, and in (e) they form antiferromagnetic
skyrmion-antiskyrmion pairs.

II1. RESULTS

A. Evolution of magnetic phases at quarter filling

First, the evolution of magnetic ground states at quarter
filling is studied by varying the superexchange coupling J. As
shown in Fig. 2, for small J the ground state has a ferromag-
netic (FM) order. As effects of the single-ion anisotropy, all
spins are aligned along the S direction. The Curie tempera-
ture 7¢ of FM phase decreases with increasing J and becomes
vanishingly small at J &~ 0.22. Above J ~ 0.7, the ground
state develops a Néel AFM (NAFM) order, as demonstrated in
Fig. 2(b) by the the inflection point of the static spin structure
factor S(q) at the NAFM wave vector q = (7, ) [62].

Second, for 0.22 < J < 0.7, the spins do not show any fea-
ture in either the real-space pattern [Fig. 2(d)] or the structure
factor in the momentum space [inset of Fig. 3(d)]. Moreover,
our MC simulations do not find any spin freezing at low
temperatures (see Fig. S2 in SM [62]). This, together with
properties discussed below, suggests the magnetically disor-
dered ground state in this intermediate J regime is a classical
SL (sometimes also called a cooperative paramagnet [63]).

As shown in Fig. 3(a), in the zero-temperature limit, the
total energy E and its first derivative dE /dJ vary continuously
across the FM-to-SL transition, but the second derivative
d?E/dJ? exhibits a prominent peak. This implies that the
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FIG. 3. (a) Evolution of the total energy E with J near the FM-
to-SL transition. Inset: dE/dJ and d’E /dJ*. Both E and dE /dJ
vary continuously while d?E /dJ? exhibits a peak at J = 0.22, im-
plying a second-order transition. (b) Temperature evolution of the
kinetic energy Ex and the superexchange energy Egg for selected J’s.
(c) Inverse of spin susceptibility 1/x as a function of temperature
for the FM and SL ground states. Lines are the Curie-Weiss fits to
high-temperature data. (d) Finite-size scaling of the spin structure
factor at q = (0, 0) for two J’s stabilizing the FM and SL ground
states. Curves are quadratic fits. Inset: The static structure factor in
the momentum space for J = 0.230.

FM-to-SL transition is second order. A similar conclusion
applies to the SL-to-NAFM transition. Note that the nature
of these transitions is in sharp contrast to that in one-orbital
spin-fermion models on geometrically nonfrustrated lattices,
in which tuning the superexchange coupling J usually in-
duces a strong first-order transition between a FM metal and
an insulating NAFM state [60,64,65]. It is rather similar to
the (A)FM-to-SL transition in a frustrated lattice [56,66],
although our system is nonfrustrated.

B. Topological defects and properties of SL

To better understand these magnetic transitions in our
model, we examine the MC snapshots in FM and NAFM
states. Remarkably, we find the real-space spin patterns close
to the transitions contain various TDs. In the FM phase,
depending on the value of J, they can be either skyrmion-
antiskyrmion pairs, meron-antimeron pairs, vortex-antivortex
pairs, or even their combinations, as shown in Fig. 2(c) and
Fig. S2 in SM [62]. In the NAFM phase, TDs also appear in
pairs, as illustrated in Fig. 2(e). The only difference is that
spins on the two sublattices form interpenetrating skyrmions
(or other TDs) with opposite chirality (referred to as an AFM
skyrmion here). In both the FM and NAFM phases, TDs
always appear in pairs, and each pair is formed by bounding
one particle (skyrmion, meron, etc.) and its antiparticle coun-
terpart with opposite chirality.

Recently, magnetic phases with nontrivial topological
structures, such as a skyrmion crystal (SkX), have been
extensively studied. A well-known mechanism to stabilize

these phases lies in the interplay between the Dzyaloshinskii-
Moriya interaction, geometric/exchange frustration, and
magnetic anisotropy [67]. It is also noticed that in centrosym-
metric KLM, Fermi-surface nesting and an out-of-plane
external field also play crucial roles [68,69]. The TDs emerg-
ing in our model are different from these known phases.
Although the periodic structure of TDs cannot be fully ex-
cluded due to the small lattice used in simulation, the pairwise
appearance of the TDs and the monotonically reduced but
nonzero ¢ imply that they are topological excitations disturb-
ing the magnetic orders. The emergence of TDs provides a
likely scenario for the FM(NAFM)-to-SL transition, i.e., the
SL phase arises from a proliferation of TDs. Note here the
easy-axis magnetic anisotropy excludes a Kosterlitz-Thouless
(KT) transition. It would be then interesting to examine the
universality of this transition.

It should be noted that the possible influence from a finite-
size lattice is checked via scaling [Fig. 3(d)]. In addition, using
a similar model [70], Matsui et al. proved that the size of the
topological defects depends on the lifetime of the itinerant
electrons and the coupling constant between electrons and
localized spins, which are fixed in our simulation. Indeed,
we did not find any evidence that the topological defects are
unstable against the lattice size. Furthermore, by employing
a one-orbital model which allows much larger lattices, the
topological defects remain robust (Fig. S4 in SM) [62].

We then investigate the properties of the SL phase.
Figure 3(b) shows the temperature dependence of the kinetic
and superexchange energies (Ex and Egg) per site at sev-
eral J values. For the FM phase, both energies show clear
temperature dependence. Near the critical point J = 0.22,
both energies show minimal temperature dependence. Fur-
ther increasing J where the ground state becomes a SL, the
temperature dependence of both energies remains weak. Note
that the entropy is evaluated by the integration of 1/TdE /dT,
and the weak temperature dependence of energies suggests
a large residual entropy of the SL. Also note that compared
to Esg, Ex shows an even weaker temperature dependence in
the SL phase. This implies that the residual entropy is mainly
ascribed to the orbital fluctuations of the model, given that the
lattice has no geometric frustration. This is in contrast to the
case with geometric frustration [56] where both Ex and Esg
show minimum temperature dependence only within a narrow
critical regime.

We now turn to study the temperature dependence of the
magnetic susceptibility y, which usually follows a Curie-
Weiss behavior at high temperatures as y = C/(T — Ocw),
where C is a constant and Ocw is the Curie-Weiss tempera-
ture. The Curie-Weiss fit provides not only an estimate of the
exchange interaction but also a measurement of frustration.
Figure 3(c) shows the 1/x for two J values below and above
the FM-to-SL transition, respectively. For J = 0.167 (in the
FM region), the fitted Curie-Weiss temperature 6cw =~ 0.01,
indicating an effective FM interaction among spins. Moreover,
1/x deviates from the Curie-Weiss behavior at T ~ 0.02. This
temperature is slightly higher than cw, indicating a rather
weak frustration effect for this J. In contrast, for J = 0.264
(in the SL region), the fitted 6cw =~ —0.01, showing that the
effective exchange interaction changes to AFM. Interestingly,
for T < |6cw/|, x undergoes a Curie crossover to 1/x ~ T
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FIG. 4. The phase diagram as a function of chemical potential
with fixed J = 0.15 and at 7 = 0.002. The squares represent the
density of itinerant electrons per site while the circles represent the
real-space correlation function. (b)—(d) The MC snapshots for u =
—0.95, —0.8, and —0.5, respectively. (e) The inverse susceptibility
for u = —0.75.

behavior. Such a crossover behavior indicates strong spin frus-
tration and has been observed in a number of SL models [71]
and SL candidate materials [72]. In addition, the finite-size
scaling analysis in Fig. 3(d) indicates that within this SL
regime, the magnetic order parameter drops to zero in the ther-
modynamic limit, confirming that the system is magnetically
disordered.

IV. DISCUSSION

Besides the superexchange coupling J, the FM-SL-AFM
transition can also be induced by tuning the chemical potential
. Figure 4 shows a typical phase diagram of the system
with p for J = 0.15. To trace the variation of magnetic order
with u, we calculate the spin correlation function C(R) =
(S; - Siyr) at the largest spatial distance R = (L/2, L/2). At
quarter filling (i.e., electron density per site (n) = 1), the
ground state is FM [i.e., C(R) &~ 1]. With decreasing wu,
the electron density decreases continuously, and TDs appear
[see Fig. 4(b)]. For (n) < 0.8, C(R) develops a zero plateau,
indicating the suppression of the FM order and the emergence

of the SL. This SL phase is stabilized until (n) =~ 0.5 (1/8
filling). In analogy to the quarter-filling case, this SL exhibits
a disordered spin pattern [Fig. 4(c)] and a Curie crossover in
the susceptibility [Fig. 4(e)].

Further decreasing the chemical potential yields the NAFM
phase, as characterized by a negative C(R). Interestingly,
AFM TDs are observed in the NAFM phase, as shown in
Fig. 4(d). Stabilization of the SL within a finite range of
electron filling suggests that this phase is insensitive to the
shape of the Fermi surface, which is known to be rele-
vant for weak Kondo couplings [55]. In our case, the SL
phase instead emerges as a compromise of the competing FM
double-exchange and AFM superexchange interactions. In the
vicinity of the SL phase, TDs appear as a consequence of
strong fluctuations induced by this competition, which are fur-
ther enhanced by the nontrivial topology of the band structure.

As a final remark, it has been known that an intermediate
regime for SL phase in the one-orbital Dirac fermion model
does not exist, even if the correlation effect is considered
[29,73], namely the electron correlation alone is not enough
in searching for such a highly entangled state of matter. Then
it is of great interest to examine whether the degenerate or-
bitals can introduce another flavor of gauge field fluctuation,
a defining characteristic of a SL. Here, a two-orbital basis
on the honeycomb lattice has been tested, which naturally
manifests a Weyl-type band structure in the reciprocal space.
In the spin-fermion model (one-orbital or two-orbital), the
exchange frustration from antiferromagnetic J can naturally
tune the ground state from ferromagnetism to antiferromag-
netism, with topological defects in real space emerging during
this transition. The most interesting physics is that only in
the two-orbital version the SL phase can survive as an in-
termediate phase, in which the orbital degeneracy plays the
essential role. This scenario is summarized in Fig. S3 in SM,
and the controlled study of the one-orbital model can be found
in Fig. S4 in SM [62].

V. CONCLUSION

To summarize, in our model, topological defects have
been observed in both ferromagnetic and antiferromagnetic
phases in a two-orbital spin-fermion model on the honeycomb
lattice. These topological defects suppress magnetic orders
and eventually lead to an intermediate spin-liquid phase
via continuous quantum phase transitions, which can be
achieved by tuning either the superexchange interaction or
the electron density. Our results suggest that fluctuations
introduced by orbital degeneracy can be a possible recipe for
preparing a highly nontrivial quantum state on a geometrically
nonfrustrated lattice. The model proposed here has the
potential to be realized in the recently discovered itinerant
magnetic materials on the hexagonal lattice with a partially
filled e, manifold [74], dilute honeycomb magnets [75], or an
ultracold atomic optical lattice which can mimic the SU(N)
(N = 2) double-exchange model [76].
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