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Ferroelectrics are important smart materials that can facilitate 
conversions among electric, mechanical, thermal and opti-
cal signals. The most commercially popular ferroelectrics are 

three-dimensional (3D) inorganic crystals, such as Pb(Zr1–xTix)O3 
and BaTiO3. In the quest for energy savings, greater integration and 
more flexibility, unconventional ferroelectrics are becoming highly 
attractive for a range of applications. For example, two-dimensional 
(2D) ferroelectrics are rapidly growing as an emerging branch1–3, 
with several experimentally confirmed materials, such as SnTe 
monolayer4, CuInP2S6 few-layers5 and α-In2Se3 nanoflakes6, and 
more predicted. In these materials, ferroelectricity can persist to the 
atomic level, making them superior to conventional 3D perovskites. 
Furthermore, exotic effects, such as giant negative piezoelectricity 
and sliding ferroelectricity, have been revealed in these systems7,8.

Sliding ferroelectricity is a unique type of polarity that exists 
only in van der Waals (vdW) materials. Concretely, the stacking 
mode of vdW layers breaks the inversion symmetry, generating 
out-of-plane polarizations. Soon after the theoretical prediction of 
sliding ferroelectricity by Wu et al. 9, subsequent experiments found 
evidences of this polarity in WTe2 bilayer/few-layer/flakes10–12 and 
bilayer hexagonal BN13,14/1T′-ReS2 (ref. 15)/R-MX2 (M = Mo/W, 
X = S/Se)16. In addition, this sliding concept has been generalized to 
broader scopes, such as moiré ferroelectricity8 and intralayer slid-
ing17. Despite these achievements, existing experimental evidences 
are indirect (as summarized in Supplementary Table 1). In fact, 
many of these materials are semiconductors or even semi-metals, 
making the standard electrical measurements of ferroelectricity 
challenging. Alternatively, their ferroelectric properties were mostly 
characterized by the transport behaviours of nanodevices or piezo-
response force microscopy (PFM), with inevitable interference 
from leakage currents and environments. For example, the coercive 

electric fields in transport measurements were high (of the order of 
0.1 V nm−1)10,12, instead of the expected small value according to the 
sliding mechanism. Large coercivities and serious leakage will cor-
rode the technical value of ferroelectrics.

Another interesting branch of polar materials is the family of 
molecular ferroelectrics18,19. In most of these materials, the polar-
ity is caused by dipolar molecules, for example, pyridinium20, ben-
zylammonium21, diisopropylammonium22, pyrrolidinium23 and 
cyclohexylammonium24. These dipolar molecules are dynamically 
disordered at high temperatures and ordered below their critical 
temperatures (TC), leading to the alignment of dipoles and spon-
taneous polarizations. The ferroelectricity in a series of plastic 
molecular ferroelectrics, including molecular perovskite ferro-
electrics, belongs to this type25–27. In addition, various non-dipolar 
dynamic molecules, such as crown-ethers and molecular gyro-
scopes, also exist. In a few crown-ether-based ferroelectrics, 
such as [(C7H10NO)(18-crown-6)][BF4], [(C7H10NO)(18-crown-
6)][ReO4] and (m-FAni)-(Dibenzo[18]crown-6)[Ni(dmit)2]10 
(m-FAni = m-fluoroanilinium; dmit2− = 2-thioxo-1,3-dithiole- 
4,5-dithiolate)28–30, ferroelectricity is ascribed to the alignment of 
rotating p-methoxyanilinium and m-fluoroanilinium, with the 
crown-ethers acting as stators. Compared with dipolar molecules, 
these non-dipolar dynamic molecules have been relatively ignored, 
and thus their ferroelectricity remains not fully understood.

In this work, the ferroelectricity in an amphidynamic vdW crys-
tal coordination polymer (15-crown-5)Cd3Cl6 (CCC)31 is unambig-
uously confirmed. Interestingly, the ferroelectricity of CCC has two 
sources. The first contribution comes from individual layers, whose 
dipoles are driven by the geometric frustration of oxygen ions once 
the rotational dynamics of crown-ethers are frozen. The second con-
tribution is generated by interlayer sliding, which is the dominant  
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component of the overall polarization. These two components are 
positively superposed, going beyond established scenarios. Most 
importantly, directly proving sliding ferroelectricity in this highly 
insulating crystal extends sliding ferroelectricity to broader scopes 
and reduces the technical difficulties of manipulating this property.

Proof of amphidynamic properties of CCC crystal
Colourless and transparent rod-like single crystals of CCC in size 
of 3 × 3 × 8 mm3 (Fig. 1a and Supplementary Fig. 1) were grown by 
slow evaporation of a clear methanol solution containing stoichio-
metric amounts of CdCl2 and 15-crown-5 at room temperature. 
Phase purity was confirmed by powder X-ray diffraction and infra-
red radiation analysis (Supplementary Figs. 2 and 3).

Based on differential scanning calorimetry analysis, CCC 
undergoes a phase transition at TC = 320 K (Supplementary Fig. 4). 
Its crystal structures were determined by single-crystal X-ray dif-
fraction at 253–343 K (Supplementary Note 1 and Supplementary 
Table 2). The high-temperature phase (HTP) is centrosymmetric 
with space group P21/n, while the symmetry of the low-temperature 
phase (LTP) is lowered to space group P21. Despite this difference, 
the crystal frameworks of both phases are similar. As shown in  
Fig. 1b,c, the unit cell (u.c.) of CCC consists of two layers (A and B)  
of adducts stacked along the b axis, and its structural unit can be 
described as a molecular pinwheel, where the crown-ether acts as 
the rotator.

CCC contains cadmium ions in two different chemical environ-
ments. The first kind of cadmium is surrounded by five chloride 
ions, forming a tetragonal pyramid. Neighbouring pyramids are 
edge-shared, forming 1D chains. The second kind of cadmium is 
located at the centre of 15-crown-5, coordinated by five equato-
rial oxygen ions and two axial chloride ions, forming a pentagonal 
bipyramid. The bipyramids link the chains into layers by sharing 
vertices with tetragonal pyramids. These layers are electrically 

neutral and packed by vdW forces with an interlayer distance of 
7.305(3) Å at 343 K (Supplementary Fig. 5).

In the HTP, the second kind of cadmium ion is located at the 
inversion centre (Fig. 1d). The model of 15-crown-5 determined 
from the Fourier difference map has five oxygen atoms distributed 
over ten sites and ten carbon atoms showing obvious larger thermal 
ellipsoids (Supplementary Fig. 6). This evidence initially reveals the 
rotation of 15-crown-5 in the HTP, which are frozen to fixed posi-
tions in the LTP (Fig. 1e).

To reveal the mechanical movement of the crown-ether, 
solid-state NMR spectroscopy is employed to probe the molecular 
motions in the frequency range from Hz to MHz. The motion-
ally modulated 13C isotropic signal is shown in Fig. 1f. Only one 
signal centred at 70.7 ppm is observed, which can be assigned 
to the CH2 groups of crown-ether. At 250 K, the signal shows a 
large width with a half-width of 1,250 Hz, which becomes nar-
rower and narrower upon heating. At 340 K, the signal half-width 
is reduced to only 70 Hz. This signal-narrowing phenomenon 
indicates the gradually increasing motions of crown-ether with  
increasing temperature32,33.

The 13C chemical shift anisotropy (CSA) signals above and below 
TC are compared in Fig. 1g. At 300 K, the 13C CSA pattern shows a 
complex asymmetric tensorial lineshape, implying very restricted 
mobility of the crown-ether. In contrast, its pattern at 330 K shows 
the typical features of an axially symmetric tensor with three prin-
ciple values σ11 = σ22 ≠ σ33, indicating that the crown-ether under-
goes a restricted anisotropic motion close to an axial rotation34. In 
addition, molecular motions with correlation times in the spectral 
time scale can cause the obvious lineshape perturbation35,36. The 
frequency ranges change from 9.8 kHz at 300 K to 3 kHz at 330 K, 
accompanied by a distinct change in the pattern lineshape. To pro-
duce such a lineshape perturbation, the frequency of molecular 
motion must be much higher than 9.8 kHz. Thus, the correlation 
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Fig. 1 | Structure of CCC. a, Image of single crystals. b,c, Schematic of the atomic structure of CCC in the HTP: side view (b), with the vdW stacking along 
the b axis; and top view of each vdW layer (c). d,e, Top views of a crown-ether in the HTP (d) and LTP (e). f, Temperature-dependent solid-state 13C NMR 
spectra. These spectra were acquired by using a single-pulse excitation pulse sequence with a recycle delay of 2 s. g, 13C CSA patterns at 300 K (below TC) 
and 330 K (above TC).
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time of molecular motions should be of the order of (sub)microsec-
onds, consistent with the following dielectric behaviour.

In short, CCC is an amphidynamic crystal, with inorganic  
CdCl2 chains as the stators and organic crown-ethers as the rotators 
above TC.

Characterization of ferroelectricity
According to above structural analysis, the order–disorder transi-
tion of crown-ethers induces a non-polar–polar transition of the 
CCC crystal, which can be characterized by the second harmonic 
generation (SHG) measurement on powder samples37. As expected, 
the SHG signal appears just below TC = 320 K, and its intensity 
increases gradually upon cooling (Fig. 2a). At room temperature, 
its intensity is six times that of quartz. More information about 
SHG measurements and comparisons to other materials can be 
found in Supplementary Note 2, Supplementary Figs. 7 and 8, and 
Supplementary Table 3.

In addition, frequency-dependent dielectric curves are measured 
as a function of temperature to further verify the polarity of CCC38. 
As shown in Fig. 2b and Supplementary Fig. 9a,b, the dielectric con-
stant along the b axis (ε′b) is larger than those along the a and c 
axes (ε′a and ε′c), especially near TC. This dielectric anisotropy agrees 
with CCC’s space group P21, which allows spontaneous polar-
ity only along the b axis. This dielectric anomaly is obvious over 
a wide frequency range of 500 Hz–1 MHz. For low frequencies, its 
real part ε′b peaks at TC (for example, ∼30 at 1 kHz, six times of the 
room-temperature one), and its temperature dependence is typical 
of the continuous phase transition. For higher frequencies, ε′b shows 
two broad maxima below and above TC. The temperature depen-
dence of its imaginary part ε′′b  reveals a sharp maximum, the value 

of which decreases with measurement frequency (Supplementary 
Fig. 9c). The spectra are similar to those observed for diglycine 
nitrate and Ca2Sr(C2H5CO2)6 (ref. 39) and exhibit a phenomenon 
known as dielectric critical slowing down, which is a characteris-
tic of ferroelectrics that undergo order–disorder-type continuous 
phase transitions.

To derive more information, the Cole–Cole diagrams were 
analysed at five different temperatures slightly above TC (Fig. 2b, 
insert). All these fitted plots are close to semicircles as expected for 
the ideal Debye relaxation model in which the dipoles are almost 
non-interacting. As summarized in Supplementary Table 4, the 
fitted Debye relaxation times are close to zero, indicating that the 
distribution of relaxation times is very narrow and the observed 
dielectric relaxation processes are monodispersive Debye relax-
ations. The relaxation time ranges from 4.82 × 10−6 s to 7.54 × 10−7 s 
in the temperature range from 321 to 327 K.

To confirm the ferroelectricity of CCC, it is necessary to prove 
the existence of an electrically switchable polarization below TC. 
Our measurement indeed shows a continuous curve of pyroelectric 
current below TC (peaking at TC), the sign of which can be switched 
by the poling field (Fig. 2c). These pyroelectric behaviours strongly 
support its ferroelectricity below TC. Furthermore, a polarization–
electric field (P–E) hysteresis loop is the most decisive evidence of 
ferroelectricity. To obtain the P–E loops, the current–field (J–E) 
curves are measured under different temperatures (Fig. 2d). There 
are two peaks due to charge displacement, indicating two stable 
states with opposite polarity. Variable-temperature P–E hysteresis 
loops are obtained via current integration (Fig. 2d). As tempera-
ture decreases from 293 to 273 K, the coercive field increases from 
40 to 60 kV cm−1. The saturated polarization (PS) are in the range 
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0.3–0.4 μC cm−2 at 293–273 K, consistent with above pyroelectric 
values (Fig. 2c). With decreasing temperature, PS becomes larger, 
in qualitative agreement with the increasing SHG signal intensity at 
low temperatures.

The ferroelectric domain structure is another essential element 
of ferroelectricity and can be determined by PFM. Figure 3a shows 
the topography of the (010) surface of the CCC single crystal. 
Domain textures from the amplitude and phase images in vertical 
PFM can be clearly seen in Fig. 3b,c. In contrast, in lateral PFM, 
very weak domain textures (which have the same shape as observed 
by vertical PFM) of the amplitude and phase images are observed 
(Supplementary Fig. 10a–c). These findings provide evidence for a 
strong vertical piezoresponse and a negligible lateral piezoresponse, 
implying that the polarization of CCC is only along the b axis.

To further reveal the switchable ferroelectricity of CCC, we 
recorded the vertical PFM switch spectroscopy loop, which indi-
cates the effect of the phase and the amplitude signal on the DC tip 
bias in the same crystal sample through the measurement of point-
wise polarization (Fig. 3b, inset). We also demonstrated the switch-
ing of ferroelectric domain in the homogeneous PFM amplitude 
and phase signal area (Fig. 3d–f and Supplementary Fig. 10d–f).  
The ferroelectric domain can be reversed and switched back by 
applying bias voltages. Achieving completing reversal of the domain 
confirms the ferroelectricity of CCC.

Geometric ferroelectricity
The above experimental evidences support an association between 
ferroelectricity and the disorder–order transition in crown-ethers. 
However, the symmetry-breaking mechanism in CCC differs from 
that in most previously studied amphidynamic crystals: here, the 
crown-ethers act as rotators rather than as stators as has been 
observed in many other molecules where the attached asymmetric 
groups rotate28–30.

The first mechanism involved here can be termed geometric 
ferroelectricity. In the HTP, the 10 oxygen sites (and 10 carbon,  
20 hydrogen and 2 chloride ions) in each crown-ether have inversion  

symmetry with respect to the central cadmium ion. In particular, 
the O1–Cd–O2 bond angle is 180°, and the Cd-O1 and Cd-O2 bond 
lengths are equivalent (Fig. 1d). In the LTP, the five oxygen ions tend 
to keep away from each other due to Coulombic repulsion, that is, 
to occupy the odd- or even-index sites (Fig. 1e). The inversion sym-
metry is then naturally broken for each crown-ether, which further 
leads to stereo distortions of all ions in the crown-ether.

As illustrated in Fig. 4a, all oxygen ions deviate from the 
crown-ether plane more or less (to keep away from each other), 
mainly fluctuating in the −↑−↓− pattern (similar to the spin order 
in antiferromagnets). Meanwhile, the peripheral hydrogen ions 
fluctuate correspondingly in the −↓−↓−↑−↑− pattern. The odd 
number of oxygen ions in each crown-ether frustrates this mode 
within a period, creating a soliton in each crown-ether, together 
with hydrogen ions on the peripheral side. The two apical chloride 
ions of the crown-ether are also slightly influenced by the polar 
crown-ether, with staggered lengths of Cd–Cl bonds (slightly longer 
and shorter) and bending of the Cl–Cd–Cl bond angle to ∼177.4° 
(Supplementary Fig. 11). This mechanism is similar to the ferroelec-
tricity in hexagonal manganites/ferrites RMnO3/RFeO3 (R = rare 
earth or Y), where the displacements of R ions due to structural 
trimerization are frustrated due to the triangular geometry40.

Thus, the crown-ether in the LTP can generate a dipole for each 
individual layer, which can be expressed as (pa, pb, pc) for layer A 
and (−pa, pb, −pc) for layer B. This asymmetric (symmetric) rela-
tionship of the ac component (b component) between two layers are 
guaranteed by the P21 symmetry, which has a two-fold screw axis 
and allows a net polarization only along the b axis. The existence of 
dipoles in individual layers and the relationship between layers can 
be confirmed using density functional theory (DFT) calculations 
(Supplementary Note 3), as summarized in Table 1 and illustrated 
in Fig. 4b.

Sliding ferroelectricity
Although the geometric mechanism can qualitatively explain its 
polarization along the b axis, the dipole of a bulk u.c. (0.263 eÅ) is 
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obviously larger than the direct sum of two isolated layers (0.112 eÅ) 
(Fig. 4c and Table 1), much beyond the allowable precision. Thus, 
another contribution must exist that is non-negligible (in fact domi-
nant) since its contribution amounts to 57.4% of total.

This additional ferroelectric origin is from the vdW interlayer 
sliding. Although the experimental measurements of ferroelectricity 
cannot directly distinguish the individual contributions geometric 
and sliding ferroelectricity, the existence of sliding ferroelectricity 
in CCC can be unambiguously demonstrated by monitoring ion 
positions, determined from the single-crystal X-ray diffraction 
measurements and DFT structural relaxation. Analysis of the HTP 
and LTP structures of CCC indeed reveals the existence of inter-
layer sliding (Fig. 5a). Using the cadmium ions in crown-ethers as 
the indication, the relative sliding distance in the ac plane is 0.30 Å 
according to the experimental HTP and LTP structures, which is 

confirmed in our DFT calculation (0.62 Å between the ±P ferro-
electric states). This displacement is large enough to be precisely 
captured in DFT calculations. For reference, the DFT displacement 
of Mn in BaMnO3 is only 0.038 Å (ref. 41).

The sliding indeed reduces the energy to the minimum (Fig. 5b),  
and further sliding beyond this optimal level is not energy favour-
able. The polarization contribution due to interlayer sliding is 
perpendicular to the vdW layers, as expected for all sliding ferro-
electrics, which superposes on the aforementioned geometric one 
along the b axis (Fig. 5c). Naturally, its polarization is proportional 
to the sliding distance.

Unlike previous sliding ferroelectrics, here non-zero ferroelec-
tric polarizations exist in the so-called ‘0’ states, partially arising 
from geometric dipoles. In addition, although Cd2 is not sliding 
in the ‘0’ states, other ions can still slide in a non-rigid manner 
(Supplementary Fig. 12) and generate a sliding dipole. Thus, even 
in the ‘0’ states, the net polarizations are comprised of both geomet-
ric and sliding sources. Furthermore, if the geometric contribution 
along the b axis is turned off in the DFT calculation, the interlayer 
sliding and corresponding polarization along the b axis also dimin-
ish to zero (Supplementary Note 3), implying the sliding dipole is 
probably secondary to the geometric one.

Discussion
Due to the coupling between the two components, sliding is unidi-
rectional when the sign of the geometric polarization is fixed. This 
is reasonable because the existence of geometric ferroelectricity 
breaks the inversion symmetry. As a result, with a given geometric 
component, the energy profile as a function of sliding changes from 
a double-well to a single-well structure. The expected double-well 
energy profile can be restored by flipping the geometric and slid-
ing components together, satisfying the requirement of ferroelectric 
switchability. This coupling effect is absent in previous sliding fer-
roelectrics but is similar to the hybrid improper ferroelectricity in 
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Table 1 | DFt partition of contributions from geometric and 
sliding components

Dipole along (x, y, z) Dipole along (a, b, c)

Isolated layer A pla = (−0.085, 0.056, 0.270) pla = (−0.0193, 0.056, 
0.278)

Isolated layer b plb = (0.085, 0.056, −0.270) plb = (0.0193, 0.056, 
−0.278)

Isolated layers 
A + b

pge = pla + plb = (0, 0.112, 0)

bulk (A + b 
stacking)

p = pge + psl = (0, 0.263, 0)

Dipoles for individual layers and bulk u.c. are shown in units of eÅ. The coordinate (x, y, z) is 
orthorhombic. The crystalline axes are a||x, b||y, but c is along (−0.236, 0, 0.972). pla/plb, geometric 
dipole of a single isolated layer A/b; pge, net geometric dipole within one u.c.; psl, sliding dipole of 
bulk u.c.; p, total dipole of bulk u.c.
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Ca3Ti2O7 and Ca3Mn2O7 (refs. 42–44), the polarization of which also 
depends on two coupled degrees of freedom.

Limited by the weak vdW interaction, the polarizations of slid-
ing ferroelectrics may be naturally small (typically ∼1 μC cm−2 or 
less)8. Inspired by this work, a promising direction for sliding ferro-
electricity is to couple multiple ferroelectric sources in one material, 
which can strengthen the net polarization and provide more degrees 
of freedom for manipulation. For example, here the interlayer slid-
ing can trigger the flipping of geometric polarization, and vice versa.

In addition, a noteworthy advantage of CCC is its highly insulating 
property, which can reduce the leakage current in ferroelectric mea-
surements to a minimum. Direct ferroelectric measurements then 
become possible and reliable; these are difficult to achieve for semi-
conducting or semi-metallic sliding ferroelectrics. Indeed, our DFT 
calculation finds a large bandgap of ∼4 eV (Supplementary Fig. 13), in 
agreement with the transparency and lack of colour of CCC. As a result, 
our work can provide direct characterizations of CCC’s ferroelectric-
ity, which is a decisive step for the study of sliding ferroelectricity.

Perspective
Our study unambiguously demonstrated that the ferroelectricity 
of CCC originates from both geometric and sliding mechanisms. 
Although a few molecular ferroelectrics have been developed in 
recent years, layered molecular ferroelectrics remain rare. Even in 
those few layered molecular ferroelectrics, spontaneous polarizations 
are simply induced by the alignment of discrete organic ammonium 
cations, leading to in-plane polarizations. Thus, our work is not sim-
ply a marginal extension of previous work on molecular ferroelec-
trics but describes a range of considerably more exotic ferroelectricity 
mechanisms. Both geometric and sliding ferroelectricity were previ-
ously reported only in pure inorganic materials. Our study extends 
these two kinds of polarity into the field of molecular ferroelectrics, 
enriching scientific knowledge of organic–inorganic hybrid systems 
and broadening the range of material candidates for future applica-
tions. Thus, the present work opens a door to explore more ferroelec-
tric mechanisms and materials in organic–inorganic hybrid systems.
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Methods
Differential scanning calorimetry, SHG and X-ray diffraction measurements. 
Differential scanning calorimetry measurements were performed on a Netzsch 
214 Polyma calorimeter under a nitrogen atmosphere in aluminium crucibles 
with a heating or cooling rate of 10 K min−1. For SHG experiments, samples with 
particle sizes of 75–150 μm were used to measure the SHG intensity with a pumped 
Nd:YAG laser (1064 nm, 1 Hz repetition rate), with the temperature varying from 
220 to 380 K controlled by a precision temperature controller system (HCS302, 
Instec Instruments). Variable-temperature X-ray diffraction analysis was carried 
out using a Rigaku synergy diffractometer with Mo Kα radiation (λ = 0.71073 Å). 
Data collection, cell refinement and data reduction were performed using the 
CrysAlisPro v.1.171.41.112a XtaLAB Synergy-R online system. The structures 
were solved by the direct method and refined by the full-matrix method based on 
F2 using the OLEX2 and SHELXTL (2018) software package. All non-hydrogen 
atoms were refined anisotropically, and the positions of all hydrogen atoms were 
generated geometrically. The powder X-ray diffraction pattern (Supplementary 
Figure 2) was refined using the GSAS Rietveld program46. The electron density 
profile (Supplementary Fig. 6) was obtained from PLATON47.

Dielectric, pyroelectric and ferroelectric measurements. For dielectric and 
ferroelectric measurements, the samples were made with single crystals cut into 
the form of thin plates (thickness, ∼0.3–0.6 mm) perpendicular to the crystalline 
a, b and c axes. The direction of the single crystal was determined with a Rigaku 
OD synergy diffractometer (operating system: CrysAlisPro 1.171.41.112a). Silver 
conduction paste deposited on the plate surfaces was used as the electrodes. 
Complex dielectric permittivities were measured with a TH2828A impedance 
analyser over the frequency range from 500 Hz to 1 MHz with an applied electric 
field of 0.5 V. Pyroelectric property was measured with an electrometer/high 
resistance meter (Keithley 6517B) with a heating rate of 10 K min−1. J–V curves 
were measured using the double-wave method, which can remove non-hysteresis 
components in P–E loops48. Ferroelectric switching measurements were directly 
carried out on the monocrystal by scanning probe microscopy through a 
resonant-enhanced PFM (MFP-3D, Asylum Research) and conductive Pt/Ir-coated 
silicon probes (EFM-50, Nanoworld).

Solid-state NMR experiments. The 13C solid-state NMR experiments were 
performed on a Bruker AVANCE III 400 WB spectrometer operating at 
100.06 MHz for 13C. A 4 mm double-resonance magic angle spinning probe 
was used for the 13C experiments. The temperature-dependent high-resolution 
solid-state 13C NMR spectra were acquired using the single-pulse excitation pulse 
sequence with a recycle delay of 2 s. A 4 mm magic angle spinning probe was used 
in the experiments, and the spinning speed was 10 kHz. The 13C CSA patterns were 
extracted from the 2D SUPER spectra49.

DFT calculation. The first-principles DFT calculations were performed with 
projector-augmented wave pseudopotentials as implemented in the Vienna  
ab initio Simulation Package50. The Perdew–Burke–Ernzerhof parameterization 
of the generalized gradient approximation was used for the exchange-correlation 
functional51. The plane-wave cutoff energy was 550 eV. The k-point grids of 
5 × 3 × 3 were adopted for both structural relaxation and static computation. To 
describe the interlayer interaction, the vdW correction of the DFT-D3 method is 
adopted52, which leads to lattice constants closer to the experimental values than 
obtained with other corrections. The convergent criterion for the energy was set 
to 10−6 eV, and the default criterion of the Hellman–Feynman force during the 
structural relaxation was <0.01 eV Å−1 for all atoms. In addition, the polarization 
was calculated using the standard Berry phase method53,54. More benchmarks of 
DFT calculations can be found in Supplementary Note 3, Supplementary Fig. 14 
and Supplementary Table 5.

Data availability
The experimental cif files can be found in CCDC (1875017-1875018 and 
2160711-2160716). The experimental and DFT optimized structural files were 
also uploaded as supplementary files. Source data for figures in main text and 

supplemental information of this paper are available at https://figshare.com/
articles/dataset/Direct_observation_of_geometric_and_sliding_ferroelectricity_
in_an_amphidynamic_crystal/20102213. Other data supporting these findings are 
available from the corresponding authors upon request. Source data are provided 
with this paper.
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