
Quintuple Function Integration in Two-Dimensional Cr(II) Five-
Membered Heterocyclic Metal Organic Frameworks via Tuning
Ligand Spin and Lattice Symmetry
Xiangyang Li,¶ Qing-Bo Liu,¶ Yongsen Tang,¶ Wei Li, Ning Ding, Zhao Liu, Hua-Hua Fu, Shuai Dong,
Xingxing Li,* and Jinlong Yang*

Cite This: J. Am. Chem. Soc. 2023, 145, 7869−7878 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Two-dimensional (2D) semiconductors (SCs) integrated with two or more
functions are the cornerstone for constructing multifunctional nanodevices but remain largely
limited. Here, by tuning the spin state of organic linkers and the symmetry/topology of crystal
lattices, we predict a class of unprecedented multifunctional SCs in 2D Cr(II) five-membered
heterocyclic metal organic frameworks that simultaneously possess auxetic effect, room-
temperature ferrimagnetism, chiral ferroelectricity (FE), electrically reversible spin polar-
ization, and topological nodal lines/points. Taking 2D Cr(TDZ)2 (TDZ = 1.2.5-thiadiazole)
as an exemplification, the auxetic effect is produced by the antitetra-chiral lattice structure. The
high temperature ferrimagnetism originates from the strong d-p direct magnetic exchange
interaction between Cr cations and TDZ doublet radical anions. Meanwhile, the clockwise−
counterclockwise alignment of TDZ’s dipoles results in unique 2D chiral FE with atomic-scale
vortex−antivortex states. 2D Cr(TDZ)2 is an intrinsic bipolar magnetic SC where half-metallic
conduction with switchable spin-polarization direction can be induced by applying a gate
voltage. In addition, the symmetry of the little group C4 of the lattice structure endows 2D
Cr(TDZ)2 with topological nodal lines and a quadratic nodal point in the Brillouin zone near the Fermi level.

■ INTRODUCTION
Two-dimensional (2D) multifunctional materials with unique
atomic-scale configurations and exotic electronic properties
have aroused great interest in recent decades.1,2 However, up
to now, only limited numbers of such materials have been
reported experimentally or theoretically, such as NiI2,

3

ReWCl6,
4 h-Ti2(O2)3,

5 and AlB6.
6 In addition, most are

concentrated in traditional inorganic compounds with only two
or three functions (Table S1). Developing 2D multifunctional
materials with more functions and exotic properties remains a
pending task.
Considering the structural rigidity and limited tunability of

inorganic compounds, we turn our attention to organometallic
materials with structural variability and rich functionalization
possibilities.7,8 Organometallic frameworks are hybrid porous
materials composed of abundant metal nodes and inexpensive
organic linkers.8 By tuning metal nodes or organic linkers or
the connectivity between them, they can possess functional
properties with potential applications in traditional fields of gas
separation, sensing, and optoelectronics7−9 or emerging fields
of electromechanical, magnetoelectronic, and topological
quantum technologies.10−16 For instance, by selecting
benzimidazole as an organic linker, ultrathin poly-
[Zn2(benzimidazole)4] sheets exhibit excellent performance
in H2/CO2 gas separation.

17 By using dicyanoquinonediimine
as a rotatory unit, the Cr(dicyanoquinonediimine)2 sheet has

been predicted to be an auxetic magnet.10 By changing the spin
state of organic linkers from singlet to doublet and introducing
a strong d-p direct ferrimagnetic (FiM) exchange interaction,
high Curie temperature (TC) magnetic semiconductors (SCs)
Cr(pentalene)2 (TC = 560 K),11 Cr(diketopyrrolopyrrole)2
(TC = 316 K),15 and Cr(pyrazine)2 (TC = 342 K)12,13 have
been designed theoretically. Via distorting the out-of-plane K+

counterions, ferroelectric 2D magnetic K3M2[PcMO8] (M =
Cr-Co) sheets have been forecasted.14 Through forming a
Kagome lattice on a superconducting substrate, the exper-
imentally synthesized 2D Cu2(dicyanoanthracene)3 sheet has
been calculated and found to possess topological Dirac cones
coupled with the substrate’s superconductivity.18

Among numerous organometallic frameworks, a transition
metal Cr atom as a common metal node has been widely
used,10−16 and its related planar tetracoordinate molecules or
crystals have been extensively synthesized.19−21 Although
divalent Cr compounds are uncommon in chemistry, Perlepe
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et al. have prepared a layered Li0.7[Cr(pyrazine)2]Cl0.7·
0.25(THF) (THF = tetrahydrofuran) crystal with room-
temperature ferrimagnetism under a dinitrogen or argon
atmosphere in which each Cr(II) is coordinated to four
pyrazine organic linkers within the layers forming a square
planar lattice.21 If the pyrazine rings are replaced by inversion
symmetry-breaking organic linkers, the functional properties
can be further enriched as extra tunable degrees of freedom are
introduced into the crystal structure.
In this work, by employing Cr(II) as a node and inversion

symmetry-breaking five-membered aromatic heterocycles
[TDZ, 1,2,5-oxadiazole (ODZ), 1,2,5-selenadiazole (SDZ)]
as organic linkers, a class of unprecedented 2D SCs with up to
five important functions, i.e., auxetic effect, room-temperature
ferrimagnetism, chiral ferroelectricity (FE), electrical field
controlled spin polarization, and topological nodal lines/
points, are predicted in metal organic frameworks (MOFs)
with a square planar coordination structure. As exemplified by
the Cr(TDZ)2 sheet, due to the anti-tetra-chiral square lattice,
auxetic effect emerges along the diagonal direction with a
negative Poisson’s ratio (NPR) of about −0.12. At the same
time, the strong d-p direct magnetic exchange interaction
between Cr cations and TDZ doublet radicals enables room-
temperature ferrimagnetism with TC = 378 K. Moreover, 2D
chiral FE with atomic-scale vortex−antivortex states is
discovered as a result of the coexistence of clockwise−
counterclockwise dipoles, which have previously been shown
to exist only in extremely rare cases and complex
heterojunctions.22,23 The electronic band structure indicates
that 2D Cr(TDZ)2 not only belongs to a special class of
bipolar magnetic SCs (BMSs)24,25 with the carriers’ spin
orientation readily reversible by electrical gating but also is a
topological material with square nodal lines (SNLs) and a
quadratic nodal point (QNP) protected by the C4 crystal
symmetry in the first Brillouin zone near the Fermi level. For
practical applications, these multifunctional materials provide

an excellent platform to study the proximity effect between
different properties. Moreover, by combining different
functions, some high-performance spintronic devices can be
designed, such as ultrahigh-density data storage devices.

■ RESULTS AND DISCUSSION
Possible Structures of the Cr(TDZ)2 Sheet. Due to the

lack of inversion symmetry, each five-membered aromatic
heterocyclic structure has two different orientations with
respect to the lattice plane, leading to the diversification of
crystal structures formed with Cr atoms. Taking the TDZ
organic ring as an example, Figure 1a shows four low energy
structures of the Cr(TDZ)2 sheet with point groups of P4bm,
Pb2n, P21/a, and P-42m symmetry, respectively. In these
structures, four TDZ organic rings form an approximately
square planar coordination with the Cr atoms, and each TDZ
unit is connected by two adjacent Cr atoms. The four organic
rings are arranged clockwise or counterclockwise around Cr
atoms, with the ring planes presenting an inclination angle of
about 43° with respect to the ab lattice plane. The unit cell
parameters are a = b = 9.14 Å for the P4bm phase, a = b = 9.12
Å for the Pb2n phase, a (b) = 9.20 (8.66) Å for the P21/a
phase, and a = b = 9.24 Å for the P-42m phase. For the P4bm
structure, the S atoms in TDZ rings are all on one side of the
ab plane. The panel on the left side of Figure 1a shows one
possible structure in which all S atoms are located on the upper
side of the lattice plane. Such spatial inversion symmetry-
breaking gives rise to the electric polarization and FE of the
structure (to be elaborated later). In contrast, when the S
atoms in two ortho or para TDZ rings are on the other side of
lattice plane [see the rings enclosed by dotted circles in other
panels of Figure 1a], the corresponding Pb2n, P21/a, and P-
42m structures are formed and tend to be antiferroelectric.
First-principles calculations identify that the Gibbs free

energy of the P4bm crystal at 0 K is 0.19, 0.26, and 0.30 eV per
unit cell lower than those of Pb2n, P21/a, and P-42m crystals,

Figure 1. Structural and mechanical properties. (a) Geometrical structures of the four phases of Cr(TDZ)2 (TDZ = 1.2.5-thiadiazole). (b) Gibbs
free energies per unit cell of the four phases of Cr(TDZ)2 as a function of temperature. The zoom-in inset marks the temperature of the phase
transition point of P-42m to P21/a. (c) Phonon spectrum of the most stable P4bm phase. (d) Poisson’s ratio of the P4bm structure over a ±5%
strain range along the diagonal direction.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c12780
J. Am. Chem. Soc. 2023, 145, 7869−7878

7870

https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c12780?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


respectively. As the temperature increases, the P4bm structure
remains to possess the lowest energy (Figure 1b), implying it is
the ground state configuration. For the P21/a and P-42m
crystals, a phase transition is observed at about 1040 K; see the
inset of Figure 1b. Moreover, we have also considered other
two possible crystals with different space groups (Table S2), all
of which have higher energies than the P4bm phase, and thus
we mainly focus on the most stable P4bm phase in the
following studies.
Dynamic and Thermal Stability Analysis. As shown in

Figure 1c, no obvious imaginary frequency is observed from
the calculated phonon spectrum, indicating that the Cr(TDZ)2
sheet is dynamically stable. Although some extremely small
imaginary frequencies (less than 1.8 cm−1) exist near the Γ
point by using a 3 × 3 × 1 supercell (Figure S1), they are
considered to be not physical and caused by size and boundary
effects,26 which are expected to disappear in a relatively large
supercell; see Figures S2 and S3 for the detailed tests. Due to
the rather large lattice constant, the phonon bands are
dispersionless. The existence of a large number of soft phonon
modes illustrates the flexibility of the Cr(TDZ)2 sheet.

11 For
example, the maximum Young’s modulus of the P4bm
structure is only 39 GPa (Figure S4), which is much smaller
than that of MoS2 (170−370 GPa).27 Besides the dynamic
stability, the thermal stability is further examined by perform-
ing ab initio molecular dynamic (AIMD) simulation at 400 K
(Figure S1). It is found that during the simulation, the total
energy always fluctuates near its equilibrium value without a
sudden drop, and the lattice structure can maintain well
without any reconstruction after 9 ps, confirming that the
structure is thermally stable.
Auxetic Effect. Interestingly, the structure of the Cr-

(TDZ)2 sheet belongs to the so-called anti-tetra-chiral lattice
capable of exhibiting auxeticity,28 therefore a distinct auxetic
effect and NPR along the diagonal direction are expected (see
Figure 1d). Here, the Poisson’s ratio is defined as −∂εt/∂εa,
where εt and εa are strains in the transverse and corresponding
longitudinal directions, respectively.29 The maximum value of
NPR can reach about −0.12 in the 5% strain range. This value
is smaller than that of 2D Cr(dicyanoquinonediimine)2
(−0.85),10 but comparable to most reported 2D inorganic
auxetic materials, such as Ag2S (−0.12),30 Be5C2 (−0.16),31

and SnSe (−0.17).32 The auxetic property endows 2D
Cr(TDZ)2 with potential applications in nanomechanics33

(such as auxetic strain-sensors and auxetic pumps) and defense

and aerospace aspects. In addition, it can be seen from the
Poisson’s ratio curve of 2D Cr(TDZ)2 as a function of in-plane
angle θ (Figure S4) that the mechanical property is
anisotropic.
Room-Temperature Ferrimagnetism. In the Cr(TDZ)2

sheet, each TDZ ring grabs about 0.78e from adjacent Cr
atoms based on Bader charge analysis, resulting in the
formation of TDZ doublet radical anions and Cr(II) cations.
For the Cr(II) cation, the five d orbitals are split into four
groups: (dxz, dyz), dz2, dxy, and dx2 − y2 in a square planar ligand
field (Figure S5 and Note S1). The dx2 − y2 orbital’s
contribution to the spin moment is minor due to the relatively
small difference in electron occupancy numbers between the
spin-up and spin-down energy levels. The spin moment of
Cr(II) originates mainly from the spin-up energy level of the
other four d orbitals with an electronic configuration of
dxz0.92dyz0.92dz2

0.89dxy0.85dx2 − y2
0.61 . Therefore, the magnetic moment of

Cr(II) is estimated to be 3.4 μB with a spin of S = 2. For the
TDZ radical anion, the three average p orbitals of S, C, and N
atoms are split into two groups: (px, py), pz (Figure S5 and
Note S1). Compared with px and py orbitals, the pz orbital
contributes the most to the spin moment. Because the
occupancy number of the spin-down energy level of all the p
orbitals is larger than that of the spin-up energy level, the total
magnetic moment of the TDZ radical anion is negative and
approximately −0.6 μB with a spin of S = 1/2. According to the
above analysis, we can deduce that the total magnetic moment
of Cr(TDZ)2 is approximately 2 μB per chemical formula.
To determine the magnetic ground state of the Cr(TDZ)2

sheet, eight different magnetic states, including one ferromag-
netic (FM) state, two anti-FM (AFM) states, and five FiM
states (Figure S6), are investigated. The results show that the
FiM1 state is the magnetic ground state, where the spins on
Cr(II) cations are all antiparallelly aligned with the spins on
TDZ radicals. Figure 2a shows the spin density distribution of
the FiM1 state. Obviously, the spin density on the TDZ
radicals is mainly distributed over the pz orbitals of all
nonmetallic C, N, and S atoms. It is the strong d-p direct
exchange interaction between the d-electron spins of Cr and p-
electron spins of TDZ that makes the magnetic ground state of
the system to be the FiM1 state with an energy of 0.85 eV per
chemical formula lower than that of the FM state.
For practical spintronic applications, it is crucial to keep the

magnetic ordering of the Cr(TDZ)2 sheet above room
temperature. To confirm this, we perform Monte Carlo

Figure 2. Room-temperature ferrimagnetism. (a) Spin density distribution of the Cr(TDZ)2 sheet with a P4bm symmetry in the ground FiM state.
Red and blue indicate up and down spins, respectively. (b) Nearest neighbor and next-nearest neighbor spin exchange paths for the Cr(TDZ)2
sheet. The exchange-coupling parameters Jk (k = 1∼4) are also marked. J1 represents the interaction between the Cr atom and nearest neighbor
TDZ. J2 means the interaction between the nearest two Cr atoms. J3 and J4 serve as the interaction between the nearest and next-nearest two TDZ.
(c) Magnetic moment (M) per chemical formula (black) and specific heat Cv (red) as a function of temperature by using a Monte Carlo simulation
based on the classic Heisenberg model. The magnetic exchange parameters used here are calculated with the HSE06 functional.
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simulations based on the classical Heisenberg model
Hamiltonian,34

H J S S D S
k i j j

k i j
i

i iz
2= · +

> (1)

where Jk is four different exchange-coupling parameters
presented in Figure 2b and Si is the spin of Cr or TDZ. Di
is magnetic anisotropy parameter. Since the TDZ radical is
composed of light elements, its magnetic anisotropy energy
(MAE) is relatively weak. Therefore, during the density
functional theory (DFT) calculation, we assign the total MAE
of 494.1 μeV per chemical formula to the Cr atoms (with a
value of 123.5 μeV), and the MAE of TDZ radicals is simply
taken as zero. The direction of magnetic easy axis of the
Cr(TDZ)2 sheet is perpendicular to the lattice plane. The
values of Jk are deduced from the energy differences between
the different magnetic states; see Note S2 and Table S3. Figure
2c shows the temperature-dependent spin magnetic moment
(M) per chemical formula in which the M gradually decreases
from 2 μB to 0 with the increase of temperature. The specific
heat Cv = (⟨E2⟩ − ⟨E⟩2)/T2 is obtained after the system
reaches equilibrium at a given temperature, and the peak
position manifests that the FiM−paramagnetic transition
occurs at the Curie temperature TC of 378 K, significantly
higher than room temperature.
Chiral FE. More intriguingly, due to the inversion

symmetry-breaking feature of five membered heterocycles,
the negative charge center of the TDZ ring does not coincide
with the positive one, thus an intrinsic proper electric
polarization would be present. Therefore, each TDZ ring can
be regarded as an electric dipole, which is inclined from the c-
axis at an angle of 47° and reversible in the dipole direction by
rotating the TDZ rings. The superimposed c-axis component
of all TDZ dipoles induces the ferroelectric polarization (±pc)
of the Cr(TDZ)2 sheet along the c-direction. In the ab plane,
four noncollinear electric dipoles connecting one of the Cr
atoms form an atomic-scale vortex state C+, and another four

electric dipoles linking the adjacent Cr atoms form an
antivortex state C−(Figure 3a). Such two states assemble a
2D lattice with chiral vortex−antivortex polar states down to
the monolayer scale, which is distinct from the nanometer-
scale chiral vortex−antivortex arrays in a complex hetero-
junction structure with alternating lead titanate and strontium
titanate layers.23 The vortex and antivortex states that always
appear in pairs result in complete cancellation of the electric
polarization vectors in the ab plane (Figure S7), i.e., no
macroscopic electric polarization.
Based on the above analysis, the noncollinear ferroelectric

states of the Cr(TDZ)2 sheet can be described by two
ferroelectric order parameters Q1 = +C+ + C− in the ab plane
and Q2 = +pc + pc along the c-direction, where Q1 and Q2
obviously have two degenerate modes ±Q1 and ±Q2,
respectively. As shown in Figure 3a, those four order
parameters can describe four degenerate ferroelectric vortex
states: S1 (+Q1, +Q2), S2 (−Q1, +Q2), S3 (+Q1, −Q2), S4 (−Q1,
−Q2). It is worth mentioning that the in-depth study of such
ferroelectric materials with chiral vortex properties at the
atomic scale is of great value for understanding the
noncollinear ferroelectric and chiral ferroelectric physics.
By using the dipole correction scheme in DFT,35 the

calculated polarization values of the above four vortex states
are all 1.65 μC/cm2 (see Figure S8 for details), where the
polarization directions of S1 and S2 are along the positive
direction of the c-axis, while those of S3 and S4 are along the
negative direction of the c-axis. Although the calculated
polarization values are lower than those of ReWCl6 (3.22
μC/cm2)4 and hexagonal YMnO3 (5 μC/cm2),36 they are
higher than those of bilayer BN (0.6 μC/cm2),37 bilayer SiC
(0.25 μC/cm2),38 and Sc2CO2 (1.6 μC/cm2).39

Figure 3b shows the transition path from S1 to S2. The four
TDZ rings in the S1 state first simultaneously rotate 47°
counterclockwise to reach the transition state and then further
rotate 47° counterclockwise to evolve to the S2 state, where the
energy barrier is 0.37 eV per TDZ. At the transition state, all

Figure 3. Chiral FE with atomic-scale vortex−antivortex states. (a) Four possible chiral vortex−antivortex states Si (i = 1∼4) of the Cr(TDZ)2
sheet with a P4bm symmetry. C+ represents a vortex state comprising four clockwise dipoles around the central Cr atoms, and C− means an
antivortex state comprising four counterclockwise dipoles around the central Cr atoms. +pc (−pc) serves as a state of total electric polarization that
is outward (inward) perpendicular to the ab lattice plane. (b) Possible path and energy barrier for the transition from S1 to S2. (c) Possible path and
energy barrier for the transition from S1 to S4.
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the TDZ rings are perpendicular to the ab lattice plane, where
the electric polarization along the c-axis reaches the maximum
value of 2.04 μC/cm2 and the vortex state feature disappears.
The transition from S1 to S4 is complicated, and the
corresponding energy barrier is also 0.37 eV per TDZ. Figure
3c illustrates one possible path. First the four TDZ rings in the
S1 state rotate 47° counterclockwise, next the two TDZ rings at
the para position rotate 180° clockwise, then the other two
TDZ rings rotate 180° clockwise, and finally the four TDZ
rings simultaneously rotate 47° clockwise to get to the S4 state.
Specifically, a series of possible intermediate states exist
throughout the transition, but none of them is stable after
examining their phonon spectra. For example, an intermediate
state without polarization [see the middle panel in Figure 3c]
possesses an energy of 0.27 eV higher than the ground
structure, and its phonon spectrum presents a certain
imaginary frequency; see Figure S9. In addition, Figure S10
displays another possible transition path, where the energy
barrier remains to be 0.37 eV. The transition from S1 to S3 is
similar to that from S1 to S4 (Figure S11). Overall, we can infer
that the energy barriers from Si to Sj are all around 0.37 eV, the
value of which is higher than that of WO2Cl2 (0.22 eV),40 but
lower than those of K3Fe2[PcFeO8] (0.38 eV)

14 and CrI3 (0.65
eV).41

Here, it should be noted that in the Cr(TDZ)2 sheet, there is
no significant magnetoelectric coupling because the generation
mechanisms of magnetism and FE are quite different; that is,
the magnetism arises from the direct FiM d-p exchange
coupling between Cr and TDZ, while the ferroelectric
polarization is generated by the electronegativity difference
between S and N or C. Thus, this material belongs to a type-I
multiferroic.42

Electrically Reversible Spin Polarization. To reveal the
electronic properties of the Cr(TDZ)2 sheet, the band
structures and density of states are calculated by using the
HSE06 functional, as shown in Figure 4a. Obviously, its
valence band (VB) maximum and conduction band (CB)
minimum are both at the Γ point, meaning it is a direct SC
with a band gap of 1.60 eV. The VB and CB are 100% spin
polarized in opposite spin channels, suggesting the Cr(TDZ)2
sheet belongs to an intrinsic BMS.24,25 According to the
density of states distribution of each atom, we can infer that
the VB and CB states are mainly contributed by the p orbitals
of N, C, and S atoms on the TDZ rings. The electronic states
near −2 eV below the VB are mainly contributed by the d
orbitals of Cr atoms, and those near 2.6 eV above the CB are
contributed not only by the d orbitals of Cr atoms but also by a
small amount of p orbitals of S atoms. These characteristics are
consistent with the shape of the spatial distribution of
electronic states in Figure S12.
When a positive electric gate is applied, the electrons in

Cr(TDZ)2 will be extracted, resulting in a hole doping effect. It
causes the Fermi level to move down to the VB [such as at a
concentration of −1.2 × 1014 cm−2 in Figure 4b], and the
carrier’s spin polarization is fixed at the spin-down channel.
Similarly, when a negative electric gate is used, the electrons
will be injected into the Cr(TDZ)2, inducing an upward shift
of the Fermi level to the CB [such as at a concentration of +1.2
× 1014 cm−2 in Figure 4b], and the carrier’s spin polarization is
fixed at the spin-up channel. In short, the direction of carrier’s
spin polarization can be controlled by reversing the polarity of
the electric gate.

Topological Nodal Lines/Points. Moreover, the energy
bands near the Fermi level possess doubly degenerate nodal
lines on the X-M path protected by a 2D irreps Γ1Γ2 in little
group C4, and there exists a QNP43 with a zero Chern number
protected by a 2D irreps Γ5 in point group C4v at the Γ point
(Note S3). The nodal lines are distributed at the boundary of
the 2D Brillouin zone, showing a square-shaped feature; see
the inset of Figure 4a. These topological properties are very
important in physics, since they can induce the special Landau
level,44 negative magnetoresistance,45,46 and quantized circular
photogalvanic effect.47,48 By investigating the distributions of
projected density of states, one can derive that the states of
SNLs49 and QNP near the Fermi level are dominated by the p
orbitals of N, C, and S atoms. For clarity, Figure 4c shows the
3D band characteristics of an SNL and a QNP near the Fermi
level.
To further verify the topological properties, we calculate the

edge states of the Cr(TDZ)2 sheet along the (100) direction.
As displayed in Figure 4d, the QNP at the Γ̅ point forms a
clear quadratic Dirac cone edge state, which proves that it is
nontrivial. Since the SNLs are projected into the one-
dimensional Brillouin zone, the corresponding edge states
cannot be observed. In addition, after considering the spin-
orbit coupling (SOC) effect, the QNP of Cr(TDZ)2 opens a
topological gap of 7 meV (Figure S13), which is comparable to
those of Mn(C6H5)3 (9.5 meV),50 Mn2C6S12 (7∼15 meV),51

and Cr2Se3 (6.7 meV).52

Similar Multifunctional SCs. Based on the example of the
Cr(TDZ)2 sheet, we can easily expand into a range of
multifunctional organometallic SCs by substituting the TDZ

Figure 4. Electrically reversible spin polarization and topological
nodal lines/points. (a) Spin-polarized band structures and projected
density of states for the Cr(TDZ)2 sheet with the HSE06 functional.
Red and blue lines represent spin-up and spin-down bands,
respectively. The inset shows high-symmetry points in the first
Brillouin zone. SNL represents a nodal line with square character-
istics, and QNP represents a nodal point with quadratic dispersion.
(b) Band structure of the Cr(TDZ)2 sheet for hole doping (left) and
electron doping (right) with a carrier concentration of ±1.2 × 1014
cm−2. Positive and negative values represent electron and hole doping,
respectively. (c) Three-dimensional energy band structures of an SNL
and a QNP near the Fermi level. (d) Dirac-cone edge states for QNP.
Here, X̅ points are the X’s projection of the two-dimensional Brillouin
zone in the inset of (a) along the (010) surface Brillouin zone.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c12780
J. Am. Chem. Soc. 2023, 145, 7869−7878

7873

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c12780/suppl_file/ja2c12780_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c12780/suppl_file/ja2c12780_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c12780/suppl_file/ja2c12780_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c12780/suppl_file/ja2c12780_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c12780/suppl_file/ja2c12780_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c12780/suppl_file/ja2c12780_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12780?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c12780?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


organic linkers with other five-membered heterocycles, such as
Cr(ODZ)2 and Cr(SDZ)2. All structures are dynamically and
thermally stable (Figures S1−S3). For the Cr(ODZ)2 sheet,
the ground state is the antiferroelectric P21/a state. In contrast,
the ground state of the Cr(SDZ)2 sheet is ferroelectric with an
electric polarization of about 1.01 μC/cm2 (Table S4), slightly
weaker than that of the Cr(TDZ)2 sheet. The transition energy
barriers between different ferroelectric phases remain around
0.37 eV. The auxetic effect of these two extended sheets is
superior to that of the Cr(TDZ)2 sheet, where the maximum
absolute value of NPR reaches 0.17 and 0.13 for Cr(ODZ)2
and Cr(SDZ)2 sheets, respectively (Figure S14). Both TC are
above room temperature with the highest being 410 K (Figure
S15 and Tables S5 and S6). Meanwhile, the Cr(ODZ)2 and
Cr(SDZ)2 sheets are also BMSs with oppositely spin-polarized
VB and CB edges (Figure S16). Compared with Cr(TDZ)2,
the QNP of Cr(SDZ)2 opens a larger topological gap of 33
meV from the HSE + SOC band structure, providing a
potential platform for studying the quantum anomalous Hall
effect.
Proposed Experimental Synthesis and Character-

ization Methods. For the experimental fabrication of these
2D organometallic frameworks, one possible route is to adopt
top-down technologies. Similar to the synthesized Li0.7[Cr-
(pyz)2]Cl0.7·0.25(THF) crystal,21 their bulk layered crystals are
first realized by combining redox-active coordination chem-
istry53 and postsynthetic reduction modification,21 and then
the corresponding sheets are achieved through mechanical
exfoliation. Another possible route is to use bottom-up
methodologies. Metal atoms and organic linker molecules are
deposited onto a metal surface by molecular beam evaporation
or electron beam evaporation to induce their self-assembly to
form 2D organometallic frameworks. Such preparation
strategies have been widely used to synthesize similar
coordination structures, e.g., Mn-TCNQ4 network,54 Ni-
TPyP network,55 TPA-Cs, BDA-Cs, and TDA-Cs networks.56

In addition, the ratio of Cr to organic linkers needs to be well
controlled in the experimental synthesis to ensure that all five
functions, i.e., auxetic effect, room-temperature ferrimagnetism,
chiral FE, electrical field controlled spin polarization, and
topological nodal lines/points, are achieved simultaneously;
see Note S4, Figure S17, and Table S7 for the detailed
discussion of Crn(TDZ)m.
As for the experimental characterization, the mechanical

properties including Poisson’s ratio can be elucidated by the
Brillouin scattering experiment.57,58 For the magnetic property,
the magnetic critical temperature can be obtained by
measuring the change of magnetic moment with the
temperature using the MicroSense vibrating sample magneto-
meter.21,59 For the FE, the ferroelectric phase transition
temperature and the strength of ferroelectric polarization can
be determined by testing the dielectric or ferroelectric loop of
the sample.60 For the electrically reversible spin polarization, it
can be verified by applying a gate voltage with different
directions on the sample and then measuring the carrier’s spin-
polarization direction by the spin-polarized tunneling experi-
ment.61,62 For the topological property, the inelastic neutron
scattering experiment can be performed to observe the energy
distribution in the momentum space, thereby verifying the
existence of topological nodes and nodal lines.63

Potential Applications. In practical applications, integrat-
ing so many functional properties into a single sheet can offer
two advantages. The first is to provide an ideal platform to

study different kinds of proximity effects.64 Specifically, as
shown in Figure 5a, the proximity effects between FiM, FE,

chirality, BMS, and TL can be investigated by constructing a
bilayer homojunction. Such a homojunction can effectively
avoid additional effects caused by lattice mismatch of the
heterojunction. The second is to improve the performance of
related spintronic devices through the synergy between
multiple functions. For instance, when the five functional
properties of FiM, FE, chirality, BMS, and TL are
simultaneously applied to a data storage device, the storage
density can be increased 16 (24) fold compared to a single-
function device since each function contains two switchable
states. The switching between different storage states can be
realized under an external electric or magnetic field. Figure 5b
displays a field effect transistor with the Cr(TDZ)2 sheet as a
channel material to illustrate the specific modulation method
in different functions. The orientation of spin moment (±Ms)
can be changed by applying a magnetic field B⇀ perpendicular
to the sheet plane. The transition between different electrical
polarization (±P) states and chiral (C±) states can be achieved
by assigning a certain electric field. Both the direction of
current spin polarization (I↑/↓) and the transition from trivial
SC to topological half-metal including boundary states can be
modulated by using different gate voltages.
Besides potential applications in proximity effect and high-

density data storage devices, the proposed 2D Cr(II) five
membered heterocyclic MOFs may also be useful in gas
separation, optoelectronics, etc.65 For example, in gas

Figure 5. Schematics of applying multifunctional Cr(TDZ)2 in
studying proximity effects and designing ultrahigh-density data
storage devices. (a) Constructing a Cr(TDZ)2-based homojunction
to explore the proximity effect among FiM, FE, chirality, BMS, and
topology (TL). (b) 3D schematic diagram of a field-effect transistor
device based on the Cr(TDZ)2 sheet. The field-effect transistor is
fabricated by sequentially vertically stacking graphene (Gr), BN,
Cr(TDZ)2, BN, and Gr sheets on a SiO2/Si substrate. The top and
back gates are connected to one of the Gr sheets, respectively. The
source and drain electrodes are linked to the Cr(TDZ)2 sheet. The
inset on the right shows five pairs of possible storage parameters, that
is, spin magnetic moment (±Ms), electric polarization (±P), chirality
(C±), spin polarized current (I↑/↓), and SC/topological half-metal.
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separation, they have a similar pore size (2.7 Å) to ultrathin
poly[Zn2(benzimidazole)4] sheets and thus may have a
potential advantage for H2/CO2 separation.17 In optoelec-
tronics, since these MOFs are direct SCs with bandgaps
ranging from 2.04 to 2.44 eV in the spin-down channel, they
can be used for visible light photovoltaic devices, photo-
detectors, etc.65,66 Moreover, these 2D MOFs can be also
assembled into heterojunctions with other 2D materials such
as graphene and MoS2 to integrate more functional properties,
further expanding their applications.9

■ CONCLUSIONS
To summarize, on the basis of first-principles calculations, we
report a class of unprecedented 2D multifunctional SCs with
several unique properties including auxetic effect, room-
temperature ferrimagnetism, chiral FE, electrically controllable
spin polarization, and topological nodal lines/points. The
simultaneous realization of these functions relies on the
combined tuning of the spin state of organic linkers and the
symmetry/TL of the lattice structure in MOFs constructed by
Cr(II) and inversion symmetry-breaking five-membered
aromatic heterocycles (TDZ, ODZ, and SDZ). These materials
not only serve as promising candidates for studying different
proximity effects and designing multifunctional nanodevices
but also imply the unique abilities of MOFs in obtaining
electronic/magnetic properties that are difficult to achieve in
inorganic materials such as chiral vortex−antivortex polar
states in the monolayer limit.

■ COMPUTATIONAL METHODS
DFT calculations are performed by using the projector-augmented
wave method and the Perdew−Burke−Ernzerhof (PBE) functional as
implemented in Vienna ab initio Simulation Package (VASP).67,68

The approach of Grimme (DFT-D3) with Becke−Jonson damping is
adopted for the π−π type van der Waals (vdW) interactions between
the neighboring organic rings around Cr atoms.69 To treat the
partially filled 3d orbitals of transition metal atoms, the strongly
correlated correction is considered with the PBE + U method.70 The
values of effective exchange interaction parameter (J) and onsite
Coulomb interaction parameter (U) are, respectively, set as 1.0 and
3.0 eV, which are the same as those of the previously calculated
Cr(pyz)2 sheet.

12,13 In addition, we also test the magnetic exchange
energies under different U values, and find that when U = 3 eV, the
calculated relative energies ΔE of the FM state to the FiM1 state for
the Cr(TDZ)2 sheet is closest when using the hybrid HSE06
functional (Table S8). The energy cutoff for the plane-wave basis set
is 520 eV. For the first Brillouin zone integration, the Monkhorst−
Pack k-point mesh is used with a grid spacing less than 0.02 Å−1,
corresponding to a k-mesh size of 6 × 6 × 1. The energy and force
criteria for convergence are set to 1 × 10−6 eV and 0.01 eV/Å,
respectively. A vacuum region of about 15 Å is chosen to avoid mirror
interactions between periodic layers. All structural data involved in the
main text are listed in Tables S9−S19. The phonon spectrum is
simulated by using the finite displacement method as implemented in
Phonopy package interfaced with VASP,71 where the magnetic
ordering and the exchange-correlation effect are also included. A 2 × 2
× 1 supercell with a Monkhorst−Pack k-point mesh of 2 × 2 × 1 is
adopted. The thermal stability is assessed according to the AIMD
simulation at 400 K by using a 2 × 2 × 1 supercell. The climbing
image nudged elastic band method is adopted to investigate the
structure of the transition state and the energy barrier between
different ferroelectric phases.72 Considering the complicated tran-
sition between different ferroelectric phases, a series of possible
structures on the intermediate path are conjectured to find the
structure with the highest energy, and their phonon spectra are further
analyzed to verify that they are indeed saddle points (Figure S18).

The out-of-plane electric polarization is evaluated by using the dipole
correction scheme.35 To accurately calculate the electronic structure,
the screened hybrid HSE06 functional is applied, which includes the
accurate Hartree−Fock exchange, short-range PBE exchange, long-
range PBE exchange, and PBE correlation terms,73,74 and is widely
considered to perform much better than the PBE and PBE + U
methods without the need to incorporate additional on-site Coulomb
repulsion and correlation effect.75−77

The Monte Carlo simulations are performed by using property
analysis and simulation package for materials software package.78

During the simulations, a supercell of the 24 × 24 × 1 grid is used to
reduce the periodic constraints. The spins on all magnetic sites can
flip randomly in the simulation steps. The average magnetic moment
(M) per unit cell and specific heat Cv are taken after the system
reaches the equilibrium (with at least 105 simulation steps) state at a
given temperature. The edge states have been performed using the
open-source code WANNIERTOOLS79 based on the Wannier tight-
binding model constructed using the WANNIER90 code.80 The
irreps of the electronic bands are computed by the program IR2TB on
the electronic Hamiltonian of the tight-binding model.81
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Iñ́iguez, J.; García-ernández, P.; Muller, D. A.; Chen, L. Q.; Junquera,
J.; Martin, L. W.; Ramesh, R. Observation of room-temperature polar
skyrmions. Nature 2019, 568, 368−372.
(23) Yadav, A. K.; Nelson, C. T.; Hsu, S. L.; Hong, Z.; Clarkson, J.
D.; Schlepu, T. C. M.; Damodaran, A. R.; Shafer, P.; Arenholz, E.;
Dedon, L. R.; Chen, D.; Vishwanath, A.; Minor, A. M.; Chen, L. Q.;
Scott, J. F.; Martin, L. W.; Ramesh, R. Observation of polar vortices in
oxide superlattices. Nature 2016, 530, 198−201.
(24) Li, X.; Wu, X.; Li, Z.; Yang, J.; Hou, J. G. Bipolar magnetic
semiconductors: A new class of spintronics materials. Nanoscale 2012,
4, 5680−5685.
(25) Li, X.; Wu, X.; Yang, J. Half-metallicity in MnPSe3 exfoliated
nanosheet with carrier doping. J. Am. Chem. Soc. 2014, 136, 11065−
11069.
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