COMPUTATIONAL PHYSICS

Shuai Dong

Ordinary differential equations

- Initial-value problems
- The Euler methods
- Predictor-corrector methods
- The Runge-Kutta method
- Chaotic dynamics
- Boundary-value problems
- The shooting method
- Linear equations
- Eigenvalue problems

Most problems in physics and engineering appear in the form of differential equations.

For example
(1) the motion of a classical particle is described by

Newton's equation

$$
\vec{f}=m \vec{a}=m \frac{d \vec{v}}{d t}=m \frac{d^{2} \vec{r}}{d t^{2}}
$$

(2)The motion of a quantum particle is described by the Schrodinger equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi
$$

(3)The dynamics and statics of bulk materials such as fluids and solids are all described by differential equations.

In general, we can classify ordinary differential equations into three major categories:

initial-value problems

time-dependent equations with given initial conditions

boundary-value problems
eigenvalue problems
differential equations with specified boundary conditions
solutions for selected parameters (eigenvalues) in the equations

Initial-value problems

- Typically, initial-value problems involve dynamical systems. For example, the motion of the moon, earth, and sun, the dynamics of a rocket, or the propagation of ocean waves.
- A dynamical system can be described by a set of first-order differential equations:

$$
\frac{d \vec{y}}{d t}=g(\vec{y}, t) \quad \vec{y}=\left(y_{1}, y_{2}, \cdots, y_{l}\right) \quad \begin{aligned}
& \text { the generalized } \\
& \text { position vector }
\end{aligned}
$$

$$
g(\vec{y}, t)=\left[g_{1}(\vec{y}, t), g_{2}(\vec{y}, t), \cdots g_{l}(\vec{y}, t)\right] \quad \begin{aligned}
& \text { the generalized } \\
& \text { velocity vector }
\end{aligned}
$$

Example

- A particle moving in one dimension under an elastic force

$$
\vec{f}=m \vec{a}=m \frac{d \vec{v}}{d t}=-k \vec{x}
$$

- Define $y_{1}=x ; y_{2}=v$;
- Then we obtain:

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=y_{2} \\
& \frac{d y_{2}}{d t}=-\frac{k}{m} y_{1}
\end{aligned}
$$

If the initial position

 $y_{1}(0)=x(0)$ and the initial velocity $\mathrm{y}_{2}(\mathrm{O})=\mathrm{v}(\mathrm{o})$ are given, we can solve the problem numerically.
The Euler method

$$
\begin{aligned}
& \frac{d y}{d t} \approx \frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}} \approx g\left(y_{i}, t_{i}\right) \\
& y_{i+1}=y_{i}+\tau g_{i}+O\left(\tau^{2}\right) \\
& \tau=t_{i+1}-t_{i}
\end{aligned}
$$

The accuracy of this algorithm is relatively low. At the end of the calculation after a total of n steps, the error accumulated in the calculation is on the order of $\mathrm{nO}\left(\mathrm{t}^{2}\right) \sim \mathrm{O}(\mathrm{t})$.

We can formally rewrite the above equation as an integral

$$
y_{i+j}=y_{i}+\int_{t_{i}}^{t_{i+j}} g(y, t) d t
$$

which is the exact solution if the integral can be obtained exactly.

- Because we can not obtain the integral exactly in general, we have to approximate it.
- The accuracy in the approximation of the integral determines the accuracy of the solution.
- If we take the simplest case of $\mathrm{j}=1$ and approximate $g(y, t)=g_{i}$ in the integral, we recover the Euler algorithm.

Code example

- 4.1.Euler.cpp (1.3.Intro.cpp)

Predictor-corrector method

- Use the solution from the Euler method as the starting point.
- Use a numerical quadrature to carry out the integration.
- For example, if we choose $\mathrm{j}=1$ and use the trapezoid rule for the integral.

$$
y_{i+1}=y_{i}+\frac{\tau}{2}\left(g_{i}+g_{i+1}\right)+O\left(\tau^{3}\right)
$$

Code example

- The harmonic oscillation.
- Euler method: poor accuracy with $t=0.02 \pi$.
- Predictor-corrector method: much better?
- // Predict the next position and velocity
- $\mathrm{x}[\mathrm{i}+1]=\mathrm{x}[\mathrm{i}]+\mathrm{v}[\mathrm{i}]^{*} \mathrm{dt}$;
- $\mathrm{v}[\mathrm{i}+1]=\mathrm{v}[\mathrm{i}]-\mathrm{x}[\mathrm{i}]^{*} \mathrm{dt}$;
- // Correct the new position and velocity
- $\mathrm{x}[\mathrm{i}+1]=\mathrm{x}[\mathrm{i}]+(\mathrm{v}[\mathrm{i}]+\mathrm{v}[\mathrm{i}+1])^{*} \mathrm{dt} / 2$;
- $\mathrm{v}[\mathrm{i}+1]=\mathrm{v}[\mathrm{i}]-(\mathrm{x}[\mathrm{i}]+\mathrm{x}[\mathrm{i}+1])^{*} \mathrm{dt} / 2$;

Code example

4.2. Predictor-Corrector.cpp

- Another way to improve an algorithm is by increasing the number of mesh points j . Thus we can apply a better quadrature to the integral.

$$
y_{i+j}=y_{i}+\int_{t_{i}}^{t_{i+j}} g(y, t) d t
$$

- For example, take $\mathrm{j}=2$ and then use the linear interpolation scheme to approximate $\mathrm{g}(\mathrm{y}, \mathrm{t})$ in the integral from g_{i} and $\mathrm{g}_{\mathrm{i}+1}$:

$$
g(y, t)=\frac{t-t_{i}}{\tau} g_{i+1}-\frac{\left(t-t_{i+1}\right)}{\tau} g_{i}+O\left(\tau^{2}\right)
$$

Now if we carry out the integration with $g(y, t)$ given from this equation, we obtain a new algorithm

$$
y_{i+2}=y_{i}+2 \tau g_{i+1}+O\left(\tau^{3}\right)
$$

which has an accuracy one order higher than that of the Euler algorithm.
However, we need the values of the first two points in order to start this algorithm, because $g_{i+1}=g\left(y_{i+1}, t_{i+1}\right)$.

We can make the accuracy even higher by using a better quadrature.

For example, we can take $\mathrm{j}=2$ in above equation and apply the Simpson rule to the integral. Then we have

$$
y_{i+2}=y_{i}+\frac{\tau}{3}\left(g_{i+2}+4 g_{i+1}+g_{i}\right)+O\left(\tau^{5}\right)
$$

This implicit algorithm can be used as the corrector if the previous algorithm is used as the predictor.

A car jump over the yellow river

－1997年，香港回归前夕，柯受良驾驶跑车成功飞越了黄河天堑壸口瀑布，长度达 55 米。飞越当天刮着大风，第一次飞越没有成功，但第二次成功了，其中有过很多危险的动作，但他都安全度过了，因此获得了＂亚洲第一飞人＂的称号。

1953－2003

- Let us take a simple model of a car jump over a gap as an example.
- The air resistance on a moving object is roughly given by $f_{r}=-\kappa v \nu=-c A \rho v \nu$, where A is cross section of the moving object, ρ is the density of the air, and c is a coefficient that accounts for all the other factors.
- So the motion of the system is described by the equation set

$$
\begin{aligned}
& \frac{d \vec{r}}{d t}=\vec{v}, \frac{d \vec{v}}{d t}=\vec{a}=\frac{\vec{f}}{m} \\
& \vec{f}=-m g \hat{y}-\kappa v \vec{v}
\end{aligned}
$$

Code example

- f is the total force on the car of a total mass m. Here y is the unit vector pointing upward.
- Assuming that we have the first point given, that is, r_{o} and v_{o} at $t=0$.
4.3.FlyingCar.cpp

The Runge-Kutta method

Formally,we can expand $y(t+\tau)$ in terms of the quantities at t with the Taylor expansion:

$$
y(t+\tau)=y+\tau y^{\prime}+\frac{\tau^{2}}{2} y^{\prime \prime}+\frac{\tau^{3}}{3!} y^{(3)}+\cdots
$$

A particle moving in one dimension under an
elastic force $\vec{f}=m \vec{a}=m \frac{d \vec{v}}{d t}=-k \vec{x}$.
We know the initial condition $\mathrm{x}(\mathrm{o}), \mathrm{v}(\mathrm{o})$.

- $x(t)=x(0)+x^{\prime}(0) t+x^{\prime \prime}(0) t^{2} / 2+\ldots .$.
- $\mathrm{v}(\mathrm{t})=\mathrm{v}(\mathrm{o})+\mathrm{v}^{\prime}(\mathrm{o}) \mathrm{t}+\mathrm{v}^{\prime \prime}(\mathrm{o}) \mathrm{t}^{2} / 2+\ldots .$. .
- $x^{\prime}=v ; \quad x^{\prime \prime}=v^{\prime}=-k x / m$
- $\mathrm{v}^{\prime \prime}=-\mathrm{kx}$ '/m=-kv/m
- The same process for higher orders x^{n} and v^{n} :
- x"=v";
- $\mathrm{v}^{\prime \prime}=-\mathrm{kv} \mathrm{v}^{\prime} / \mathrm{m}=\mathrm{k}^{2} \mathrm{x} / \mathrm{m}^{2}$;
- x"'"=v"';
- $\mathrm{v}^{\prime \prime}=\mathrm{k}^{2} \mathrm{v} / \mathrm{m}^{2}$

Code example
 4th-order Runge-Kutta algorithm for the harmonic oscillator

4.4.RungeKutta.cpp

Chaotic dynamics

- nonlinear item
- nonlinear physics
- chaos

An undergraduate project

PHYSICAL REVIEW B 76, 054414 (2007)
Magnetization oscillation in a nanomagnet driven by a self-controlled spin-polarized current: Nonlinear stability analysis

Xiao Chen, ${ }^{1}$ Zhizhuai Zhu, ${ }^{1}$ Yun Jing, ${ }^{2}$ Shuai Dong, ${ }^{1}$ and Jun-Ming Liu ${ }^{1,3, *}$
${ }^{1}$ Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
${ }^{2}$ Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
${ }^{3}$ International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China

An LC circuit

- An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

Equations of LC circuit

$$
\begin{gathered}
V_{C}=V_{L} . \\
i_{C}=-i_{L} . \\
V_{L}(t)=L \frac{\mathrm{~d} i_{L}}{\mathrm{~d} t} \\
i_{C}(t)=C \frac{\mathrm{~d} V_{C}}{\mathrm{~d} t} .
\end{gathered}
$$

$$
\frac{\mathrm{d}^{2} i_{L}(t)}{\mathrm{d} t^{2}}+\frac{1}{L C} i_{L}(t)=0 .
$$

$$
\omega_{0}=\frac{1}{\sqrt{L C}} .
$$

$$
\frac{\mathrm{d}^{2} i_{L}(t)}{\mathrm{d} t^{2}}+\omega_{0}^{2} i_{L}(t)=0
$$

- https://en.wikipedia.org/wiki/LC_circuit
- https://baike.baidu.com/item/LC\�\�\� \%E8\%8D\%A1\%E7\%94\%B5\%E8\%B7\%AF/21392 77 ?fr=aladdin

Homework

- Use the 4th order Runge-Kutta method to solve a LC circuit with resistance \& excitation.

Boundary-value problems

- The solution of the Poisson equation with a given charge distribution and known boundary values of the electrostatic potential.
- Wave equations with given boundary conditions.
- The stationary Schrodinger equation with a given potential and boundary conditions.

One-dimensional example

$$
u^{\prime \prime}=f\left(u, u^{\prime} ; x\right)
$$

- Where u is a function of x, u^{\prime} and $u^{\prime \prime}$ are the 1 st and $2 n d$ derivatives of u with respect to x; $f\left(u, u^{\prime} ; x\right)$ is a function of u, u^{\prime}, and x.
- Either u or u' is given at each boundary point. We can always choose a coordinate system so that the boundaries of the system are at $x=0$ and $\mathrm{x}=1$ without losing any generality if the system is finite.
- For example, if the actual boundaries are at $x=x_{1}$ and $x=x_{2}$ for a given problem, we can always bring them back to $x^{\prime}=0$ and $x^{\prime}=1$ by moving and scaling with a transformation: $x^{\prime}=\left(x-x_{1}\right) /\left(x_{2}-x_{1}\right)$
- For problems in one dimension, we can have a total of four possible types of boundary conditions:
(1) $u(0)=u_{o}$ and $u(1)=u_{1}$;
(2) $u(0)=u_{o}$ and $u^{\prime}(1)=v_{1}$;
(3) $u^{\prime}(0)=v_{o}$ and $u(1)=u_{1}$;
(4) $u^{\prime}(0)=v_{o}$ and $u^{\prime}(1)=v_{1}$.
- (2) is the same as (3) by reversing the direction.
- The boundary-value problem is more difficult to solve than the similar initial-value problem with the differential equation.
- For example, if we want to solve an initial-value problem and the initial conditions $u(0)=u_{0}$ and $u^{\prime}(0)=v_{0}$, the solution will follow the algorithms discussed earlier.
- However, for the boundary-value problem, we know only $u(0)$ or $u^{\prime}(0)$, which is not sufficient to start an algorithm for the initial-value problem without some further work.

Example:

longitudinal vibrations along an elastic rod

- The equation describing the stationary solution of elastic waves is $u^{\prime \prime}(x)=-k^{2} u(x)$
- If both ends ($\mathrm{x}=\mathrm{o}$ and $\mathrm{x}=1$) of the rod are fixed, the boundary conditions are $u(0)=u(1)=0$.
- If one end ($x=0$) is fixed and the other end ($x=1$) is free, the boundary conditions are $u(0)=0$ and $u^{\prime}(1)=0$.
- For example, if both ends of the rod are fixed, the eigenfunctions

$$
u_{l}(x)=\sqrt{2} \sin k_{l} x
$$

are the possible solutions of the differential equation.

- Here the eigenvalues are given by

$$
k_{l}^{2}=(l \pi)^{2} \quad \text { with } \mathrm{l}=1,2, \ldots, \infty .
$$

The shooting method

- The key here is to make the problem look like an initial-value problem by introducing an adjustable parameter; the solution is then obtained by varying the parameter.
- For example, given $u(0)$ and $u(1)$, we can guess a value of $u^{\prime}(0)=a$, where a is the parameter to be adjusted.

The shooting method

- For a specific a, the value of the function $\mathrm{u}_{\alpha}(1)$, resulting from the integration with $u^{\prime}(0)=a$ to $\mathrm{x}=1$, would not be the same as u_{1}.
- The idea of the shooting method is to use one of the root search algorithms to find the appropriate α that ensures $f(\alpha)=u_{a}(1)$ $\mathrm{u}(1)=0$ within a given tolerance δ.

The shooting method

- With given boundary conditions $\mathrm{u}(\mathrm{o})=\mathrm{o}$ and $\mathrm{u}(1)=1$, We can define new variables $\mathrm{y}_{1}=\mathrm{u}$ and $\mathrm{y}_{2}=\mathrm{u}^{\prime}$;

$$
\frac{d y_{1}}{d x}=y_{2}, \frac{d y_{2}}{d x}=-\frac{\pi^{2}}{4}\left(y_{1}+1\right)
$$

- Assume that this equation set has the initial values $\mathrm{y}_{1}(\mathrm{O})=0$ and $\mathrm{y}_{2}(\mathrm{O})=\alpha$.
- Here α is a parameter to be adjusted in order to have $f(\alpha)=u_{\alpha}(1)-1=0$.
- We can combine the secant method for the root search and the 4th-order Runge-Kutta method for initial-value problems to solve the above equation set.

Linear equations

- Many eigenvalue or boundary-value problems are in the form of linear equations, such as

$$
u^{\prime \prime}+d(x) u^{\prime}+q(x) u=s(x)
$$

- Assume that the boundary conditions are $u(0)=$ u_{o} and $\mathrm{u}(1)=\mathrm{u}_{1}$. If all $\mathrm{d}(\mathrm{x}), \mathrm{q}(\mathrm{x})$, and $\mathrm{s}(\mathrm{x})$ are smooth, we can solve the equation with the shooting method as shown above.
- However, an extensive search for the parameter a from $f(\alpha)=u_{a}(1)-u_{1}=0$ is unnecessary in this case, because of the principle of superposition of linear equations: any linear combination of the solutions is also a solution of the equation.
- We need only two trial solutions $\mathrm{u}_{\mathrm{ao}}(\mathrm{x})$ and $\mathrm{u}_{\alpha 1}$ (x), where α_{0} and α_{1} are two different parameters.
- The correct solution of the equation is given by

$$
u(x)=a u_{\alpha_{0}}(x)+b u_{\alpha_{1}}(x)
$$

where a and b are determined from $u(0)=u_{0}$ and $u(1)=u_{1}$. Note that $u_{\alpha 0}(0)=u_{\alpha 1}(0)=u(0)=u_{0}$. So we have

$$
\begin{aligned}
a+b & =1 \\
u_{\alpha_{0}}(1) a+u_{\alpha_{1}}(1) b & =u_{1}
\end{aligned}
$$

Code example

- 4.5.Boundary.cpp

$$
u^{\prime \prime}=-\frac{\pi^{2}}{4}(u+1)
$$

