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Ordinary differential equations

Initial-value problems

The Euler methods
Predictor-corrector methods
The Runge-Kutta method
Chaotic dynamics
Boundary-value problems
The shooting method

Linear equations

Eigenvalue problems



Most problems in physics and engineering
appear in the form of differential equations.

For example

(Mthe motion of a classical particle is described by

Newton’s equation ~ .
f =ma =m v _ m dr

dt dt’
@The motion of a quantum particle is described by

the Schrodinger equation
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®The dynamics and statics of bulk materials such as
fluids and solids are all described by differential
equations.




In general, we can classify ordinary differential
equations into three major categories:

initial-value time-dependent equations with

problems given initial conditions

boundary-value differential equations with
problems specified boundary conditions

eigenvalue solutions for selected parameters
problems (eigenvalues) in the equations



Initial-value problems

 Typically, initial-value problems involve
dynamical systems. For example, the motion of
the moon, earth, and sun, the dynamics of a
rocket, or the propagation of ocean waves.

« A dynamical system can be described by a set of
first-order differential equations:

d)_; the generalized

Z:g()_;’t) )7:()/1,)/2,”',)/1) position vector

the generalized

g,t)=[g,(y,1),8,(¥,0),-+ g(¥,1)] velocity vector




Example
A particle moving in one dimension under an

elastic force

—_

dv

f=ma=m—=—kx

e Define y,=x; y,=v;

« Then we obtain:

dy
—L =y,
dt

dt

If the initial position
y,(0)=x(0) and the initial
velocity y,(0) = v(0) are
given, we can solve the
problem numerically.




The Euler method

dy Vil = YV,

— ~ LY L~ Lt
7 — g(yi>t;)
yi+1:yi+z-gi+0(z-2)

4 :ti+1_ti

The accuracy of this algorithm is relatively
low. At the end of the calculation after a
total of n steps, the error accumulated in the
calculation is on the order of nO(t2)~O(1).



We can formally rewrite the above equation as an

integral .
Yivj = Vi +J;. g(y,t)dt

which is the exact solution if the integral can be
obtained exactly.

« Because we can not obtain the integral exactly in
general, we have to approximate it.

* The accuracy in the approximation of the
integral determines the accuracy of the solution.

 If we take the simplest case of j = 1 and
approximate g(y, t) = g; in the integral, we
recover the Euler algorithm.
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Code example

4.1.Euler.cpp (1.3.Intro.cpp)

| Euler method (:=0.005r)

X/V




Predictor-corrector method

« Use the solution from the Euler method as the
starting point.

e Use a numerical quadrature to carry out the
integration.

« For example, if we choose j = 1 and use the
trapezoid rule for the integral.

.
Yis1r = i +5(gi +gi+1)+0(73)



Code example

The harmonic oscillation.

Euler method: poor accuracy with t = 0.02m.
Predictor-corrector method: much better?

// Predict the next position and velocity
x[1+1] = x[1]+Vv[i]*dt;
v[i+1] = v[i]-x[1]*dt;

// Correct the new position and velocity
x[1+1] = x[1]+(v[i]+V[i+1])*dt/2;
vli+1] = v[i]-(x[1]+x[i+1])*dt/2;




X/v
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Code example

4.2. Predictor-Corrector.cpp

| Predictor-corrector method (¢=0.02r) |

—a—X —e—\

X/v




« Another way to improve an algorithm is by
increasing the number of mesh points j. Thus we
can apply a better quadrature to the integral.

tz’+j
Vivj = Vi +J;_ g(y,t)dt

« For example, take j = 2 and then use the linear
interpolation scheme to approximate g(y, t) in
the integral from g; and g, .

t_ti (t_ti+ )
il ~ : gi_l_O(Tz)
T T

g(y,t)=



Now if we carry out the integration with g(y, t)
given from this equation, we obtain a new
algorithm

yi+2 — yi + zz-gi+1 + 0(73)

which has an accuracy one order higher than
that of the Euler algorithm.

However, we need the values of the first two
points in order to start this algorithm, because

8i+1 = g(Yi+1a iy )



We can make the accuracy even higher by using a
better quadrature.

For example, we can take j = 2 in above equation
and apply the Simpson rule to the integral. Then
we have

.
yi+2:yi+§(gi+2 g, t&:) 0(75)

This implicit algorithm can be used as the
corrector if the previous algorithm is used as the
predictor.



A car jump over the yellow river
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« Let us take a simple model of a car jump over a
gap as an example.

» The air resistance on a moving object is roughly
given by f. =—xvv =-cApvv, where A is cross

section of the moving object, pis the density of
the air, and c is a coefficient that accounts for all

the other factors.
« So the motion of the system is described by the
equation set ar v ]7
—ad=—,

E " dt m
f =—mgp—Kvv.



Code example

o f1s the total force on the car of a total
mass m. Here y is the unit vector
pointing upward.

« Assuming that we have the first point
given, thatis, r, and v, at t = o.

4.3.FlyingCar.cpp



The Runge—Kutta method

Formally,we can expand y(t+1) in terms of the

quantities at t with the Taylor expansion:

vy T o B 3)
yg+r)=y+1y —|—7y —I—?y‘ 1

A particle moving in one dimension under an
. y dv -
elastic force f =ma =m—=—kx.

dt

We know the initial condition x(0),v(0).




x(t)=x(0)+x'(0)t+x"(0)t2/2+......
v(t)=v(0)+v'(0)t+v'(0)t2/2+......

x=v; X '=v=-kx/m

v'=-kx'/m=-kv/m

The same process for higher orders x and v=:
X"'=v";

v'"'=-kv'/m=k2x/mz2;

X =V

V”"=k2V/m2



Code example

4th-order Runge—Kutta algorithm for the
harmonic oscillator

4.4.RungeKutta.cpp



Chaotic dynamics

e nonlinear item
 nonlinear physics
e chaos




An undergraduate project

PHYSICAL REVIEW B 76, 054414 (2007)

Magnetization oscillation in a nanomagnet driven by a self-controlled spin-polarized current:
Nonlinear stability analysis
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An LC circuit

e An LC circuit, also called a
EEEYEED resonant circuit, tank circuit, or
C i E_E‘_LE tuned circuit, is an electric circuit

consisting of an inductor,
represented by the letter L, and a
capacitor, represented by the
letter C, connected together. The
circuit can act as an electrical
resonator, an electrical analogue
of a tuning fork, storing energy
oscillating at the circuit's
resonant frequency.




Equations of LC circuit

Ve= V..

d%(r) ~
dr L 'L(t) =
Ic =—1L | 1
wpy = —.
' VIC
diL
Vi(t) = :
df dzlL(f)_*_wg. () =0
gz T @i =0.
dV.
ic(t)=C T  https://en.wikipedia.org/wiki/LC_ circuit

 https://baike.baidu.com/item/LCHE6%8C%AF
WE8%8D%A1%E7%94%B5%E8%B7%AF /21392
77?fr=aladdin



Homework

« Use the 4th order Runge-Kutta method to
solve a LLC circuit with resistance &
excitation.



Boundary-value problems

« The solution of the Poisson equation with a given
charge distribution and known boundary values

of the electrostatic potential.
- Wave equations with given boundary conditions.

e The stationary Schrodinger equation with a

given potential and boundary conditions.



One-dimensional example
u" = f(u,u’;x)

 Where u is a function of x, u' and u" are the 1st
and 2nd derivatives of u with respect to x;
f(u,u';x) 1s a function of u, u', and x.

 Either uor u'is given at each boundary point.
We can always choose a coordinate system so
that the boundaries of the system are at x=0 and
x=1 without losing any generality if the system is
finite.



« For example, if the actual boundaries are at x = x,
and x = x, for a given problem, we can always bring
them back to x'=0 and x'=1 by moving and scaling
with a transformation: x'=(x—x,)/(x, —x,)

« For problems in one dimension, we can have a
total of four possible types of boundary conditions:
(1) u(o) =u, and u(1) = u,;
(2)u(o)=u,andu'(1) =vy;
(3) u'(0) = v, and u(1) = u;;
(4)u'(0) =v,and u'(1) = v,.
» (2)1s the same as (3) by reversing the direction.



» The boundary-value problem is more difficult to
solve than the similar initial-value problem with
the differential equation.

« For example, if we want to solve an initial-value
problem and the initial conditions u(o) = u, and
u'(o) = v,, the solution will follow the algorithms
discussed earlier.

« However, for the boundary-value problem, we
know only u(o) or u'(o), which is not sufficient to
start an algorithm for the initial-value problem
without some further work.



Example:

longitudinal vibrations along an elastic rod
* The equation describing the stationary solution of
elasticwavesis 3" (x) = —k2u(x)
e If both ends (x=0 and x=1) of the rod are fixed, the
boundary conditions are u(o)=u(1)=o0.

e If one end (x=0) is fixed and the other end (x=1) is
free, the boundary conditions are u(o)=0 and
u'(1)=o0.



« For example, if both ends of the rod are fixed,
the eigenfunctions

X)) = V2 sin ki x

are the possible solutions of the differential
equation.

« Here the eigenvalues are given by

k} =(r)* withl=1,2,... .



The shooting method

« The key here is to make the problem look
like an initial-value problem by
introducing an adjustable parameter; the
solution is then obtained by varying the
parameter.

« For example, given u(o) and u(1), we can
guess a value of u'(o)=a, where a is the
parameter to be adjusted.



The shooting method

 For a specific a, the value of the function
u,(1), resulting from the integration with
u'(0)=a to x = 1, would not be the same as
u,.

« The idea of the shooting method is to use
one of the root search algorithms to find
the appropriate a that ensures f(a)=u,(1)-
u(1)=0 within a given tolerance o.



The shooting method

Guess a value
for a

v

Calculate u,(1)

v

adjust a

not

converge
converge

Correct a




2
Example u' = — ”T(u + 1)

With given boundary conditions u(o) = o and u(1) =1,
We can define new variables y,=u and y,=u’;

dy, _ dy, 7 ]

Iy Vs x A (»+D
Assume that this equation set has the initial values
Y1(O) = 0 and YQ(O) = O
Here a is a parameter to be adjusted in order to have
f(a) =u,(1)-1=0.
We can combine the secant method for the root
search and the 4th-order Runge—Kutta method for
initial-value problems to solve the above equation set.



Linear equations

« Many eigenvalue or boundary-value problems
are In the form of linear equations, such as

u” +d(x)u’ +g(x)u = s(x)

« Assume that the boundary conditions are u(o) =
u, and u(1) = u,. If all d(x), q(x), and s(x) are
smooth, we can solve the equation with the
shooting method as shown above.

« However, an extensive search for the parameter
a from f (a) = u,(1) — u, = 0 is unnecessary in
this case, because of the principle of
superposition of linear equations: any linear
combination of the solutions is also a solution of
the equation.



« We need only two trial solutions u,, (x) and u,,
(x), where a, and a, are two different parameters.

« The correct solution of the equation is given by
U(X) = AUy (X) + bty (X)
where a and b are determined from u(o) = u, and
u(1) = u,. Note that u,,(0) = u,,(0) =u(o) = u,.
So we have
a+b=1,

Uy (1)a + 2 (1)b = uy,



 4.5.Boundary.cpp

Code example
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