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Abstract: Some types of orbital resonance under gravitational field has been simulated 

in numerical way with the Eular method improved by predictor-corrector method in this paper. 

Here presents the introduction of orbital resonance, the algorithm of numerical calculation, the 

simulation results and comparison with real orbital resonance, such as that between Jupiter 

and asteroid belt. 
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I. Introduction to orbital resonance 

Orbital resonance occurs when orbiting 

bodies regularly influence each other with 

gravity, which usually because their orbit 

periods are related by a ratio of small integers  

(Wikipedia, 2019). In most cases, it results in 

an unstable interaction, two orbiting bodies 

changing orbits until the resonance no longer 

exists, for example, the gaps in the rings of 

Saturn. However, an orbital resonance 

system can be stable in some circumstances, 

such as the 1:2:4 resonance of Jupiter’s 

moons Ganymede, Europa and Io. 

II. Algorithm of numerical calculation 

Orbital resonance can be simulated by a 

many-body system. For celestial body i, the 

acceleration 
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in which 𝑚𝑗  and 𝒓𝒋 separately refer to the 

mass and position vector of celestial body j. 

Then take a small step 𝜏 from time k to 

k + 1 and apply to the Eular method (Pang, 

2011). 
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To be more accurate, predictor-corrector 

method is applied after calculating all of 

vectors v and r (Pang, 2011). 
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All of the vectors are resoluble in 

Cartesian system Oxyz. As for the program, 

there is no much difficulty describing vectors 

and their operation. 

It is necessary to simulate a two-body 

system with the aim of simply verifying the 

algorithm. The parameters are as follows. 

i 𝑚𝑖  𝒓𝒊
(𝟎)

 𝒗𝒊
(𝟎)

 k 

1 10000 (0,0,0) (0,0,0) 
1 

2 1 (1,0,0) (0,100,0) 

Theoretically celestial body 1 should be 

almost stay static while celestial body 2 need 

to have a nearly circular orbit in surface xOy. 

Set 𝜏 = 0.001  and total simulation 

time T = 10. The motion of two celestial body 

fits in with the expectation (Fig.1). The 

deviation can be explained by the influence 

of gravity that celestial body 2 has. 

 
Fig.1 Orbit of celestial body 1(upper) and 2(below). 

 

III. Simulation results and comparison 

with real orbital resonance 

Firstly consider a much smaller asteroid 

added to a star-planet system (like the system 

simulated in II) while the ratio of their initial 

orbit period is a simple fraction. Set 𝜏 =

0.001, T = 1000, and the simulation results 

show that orbital resonance 1/2 (Fig.2), 3/7 

(Fig.3), 2/5 (Fig.4) and 1/3 (Fig.5) are not 

stable for long period of time. 



 

Fig.2 Resonance 1/2, orbit (upper) and distance to center star (below) 

 

 

Fig.3 Resonance 3/7, orbit (upper) and distance to center star (below) 

 

Fig.4 Resonance 2/5, orbit (upper) and distance to center star (below) 

 

 
Fig.5 Resonance 1/3, orbit (upper) and distance to center star (below) 

 

 



 
Fig.6 Asteroid main-belt distribution (Wikipedia, 2019) 

Interestingly, in asteroid belt, there are 

few asteroids which orbit periods are 1/2, 

3/7, 2/5, or 1/3 time of Jupiter (Fig.6). The 

gaps there are known as Kirkwood gaps. 

 
Fig.7 Orbital resonance 1:2:4, orbits (upper) and distance to center 

star (below). 

 

 
Fig.8 Orbital resonance of Jupiter’s moons (Wikipedia, 2019). 

In addition, there are also stable orbital 

resonances, for example, resonance 1:2:4 

(Fig.7), which is the one of Jupiter’s moons 

Ganymede, Europa and Io (Fig.8). Below are 

one set of parameters of this type of 

resonance. 

i 𝑚𝑖 𝒓
𝒊

(𝟎)
 𝒗

𝒊

(𝟎)
 k 

1 10000 (0,0,0) (0,0,0) 

1 
2 1 (1,0,0) (0,100,0) 

3 1 (1.5874,0,0) (0,79.37008,0) 

4 1 (2.51984,0,0) (0,62.99608,0) 

Another stable resonance exists at 3/2 

(Fig.9), which is the ratio of orbit period 

between Neptune and Pluto. Below are one 

possible set of parameters. 

 

Fig.9 Resonance 3/2, orbits (upper) and distance to center star (below). 



i 𝑚𝑖 𝒓
𝒊

(𝟎)
 𝒗

𝒊

(𝟎)
 k 

1 10000 (0,0,0) (0,0,0) 

1 2 1 (1,0,0) (0,100,0) 

3 0.1 (1.31037,0,0) (0, 87.358046,0) 

What’s more, mass of orbital-resonance 

objects has little influence on the stability 

(Fig.10, Fig.11). 

 

 

 
Fig.10 Resonance 1/2  

Upper: mass 0.1, 1 

Middle: mass 0.5, 1 

Below: mass 1, 1 

 

 

 

Fig.11 Resonance 3/2 

Upper: mass 0.5, 1 

Below: mass 1, 1 

IV. Conclusion 

With the help of numerical simulation, a 

set of stable/unstable orbital resonances are 

found, which can explain some astronomical 

phenomena. The Algorithm here is also 

suitable for many-body system. However, 

perturbation theory in celestial mechanics is 

needed to have a deeper understanding of 

orbital resonance (李广宇, 2015). 
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/* 
 * Useage: time number_of_planet planet_file correct_time [central_object] 

 * 
 *      time:                   The total simulation time. 

 * 
 *      number_of_planet:       The total number of planet to be simulated. 

 * 
 *      planet_file:            The text file with initial values of all the planets.  
 *                              Each line contains the information of one planet. 

 *                              The format needs to be: 
 *                              mass position_x position_y position_z velocity_x velocity_y velocity_z 

 *         The program will not check the validity of data given. 
 * 

 *      correct_time:           The time that predictor-corrector method is used 
 * 
 *      [central_object]:       An optional argument. 

 *                              Set one of the planets as central body, 
 *                              and the relative position "xr" "yr" "zr", 

 *                              relative velocity "vxr" "vyr" "vzr", 
 *                              and distance to central body "dist" 

 *                              of other planets will be shown in the output file.  
 */ 
 

#include <iostream> 
#include <fstream> 

#include <cmath> 
#include <string.h> 

 
using namespace std; 
 

const double dt = 0.001; 
 

class vector 
{ 

 double x; 
 double y; 
 double z; 

public: 
 vector(double xx = 0, double yy = 0, double zz = 0) 

 { 
  x = xx; 

  y = yy; 
  z = zz; 
 } 

 friend vector operator +(vector &a, vector &b); 
 friend vector operator -(vector &a, vector &b); 

 friend vector operator *(double n, vector &v); 
 friend ostream &operator <<(ostream &out, vector &v); 

 double length() 
 { 
  return sqrt(x * x + y * y + z * z); 

 } 
 void setvector(double xx = 0, double yy = 0, double zz = 0) 

 { 
  x = xx; 
  y = yy; 

  z = zz; 
 } 

}; 
 

ostream &operator <<(ostream &out, vector &v) 
{ 



 out<<v.x<<'\t'<<v.y<<'\t'<<v.z; 
 return out; 

} 
 

vector operator *(double n, vector &v) 
{ 

 vector r(n * v.x, n * v.y, n * v.z); 
 return r; 
} 

 
vector operator -(vector &a, vector &b) 

{ 
 vector r(a.x - b.x, a.y - b.y, a.z - b.z); 

 return r; 
} 
 

vector operator +(vector &a, vector &b) 
{ 

 vector r(a.x + b.x, a.y + b.y, a.z + b.z); 
 return r; 

} 
 
class planet 

{  
public: 

 vector *r = 0; 
 vector *v = 0; 

 vector a; 
 double m; 
 planet() 

 { 
  ; 

 } 
 ~planet() 

 { 
  if(r) 
   delete []r; 

  if(v) 
   delete []v; 

 } 
 void initplanet(double m, double x, double y, double z, double vx, double vy, double vz, int n) 

 { 
  (*this).m = m; 
  r = new vector[n + 1]; 

  v = new vector[n + 1]; 
  r[0].setvector(x, y, z); 

  v[0].setvector(vx, vy, vz); 
 } 

}; 
 
void predictorcorrector(planet p[], const int i, const double dt, const int iteration, const int nplanet) 

{ 
 for(int k = 0; k < iteration; k++) 

 { 
  for(int n = 0; n < nplanet; n++) 
  { 

   vector rp = p[n].v[i] + p[n].v[i + 1]; 
   rp = (dt / 2) * rp; 

   rp = rp + p[n].r[i]; 
   vector a1(0, 0, 0); 

   vector a2(0, 0, 0); 
   for(int j = 0; j < nplanet; j++) 



   { 
    if(n != j) 

    { 
     vector r1 = p[n].r[i] - p[j].r[i]; 

     r1 = (p[j].m / pow(r1.length(), 3)) * r1; 
     a1 = a1 - r1; 

     vector r2 = p[n].r[i + 1] - p[j].r[i + 1]; 
     r2 = (p[j].m / pow(r2.length(), 3)) * r2; 
     a2 = a2 - r2; 

    } 
   } 

   vector vp = a1 + a2; 
   vp = (dt / 2) * vp; 

   vp = vp + p[n].v[i]; 
   p[n].r[i + 1] = rp; 
   p[n].v[i + 1] = vp; 

  } 
 } 

} 
 

int main(int argc, char *argv[]) 
{ 
 if(argc == 1) 

 { 
  cout<<"Useage:\ttime number_of_planet planet_file correct_time [center_object]\n"<<endl; 

  cout<<"\ttime:\t\t\tThe total simulation time.\n"<<endl; 
  cout<<"\tnumber_of_planet:\tThe total number of planet to be simulated.\n"<<endl; 

  cout<<"\tplanet_file:\t\tThe text file with initial values of all the planets."<<endl; 
  cout<<"\t            \t\tEach line contains the information of one planet."<<endl; 
  cout<<"\t            \t\tThe format needs to be:"<<endl; 

  cout<<"\t            \t\tmass position_x position_y position_z velocity_x velocity_y 
velocity_z\n"<<endl; 

  cout<<"\t            \t\tThe program will not check the validity of data given."<<endl; 
  cout<<"\tcorrect_time:\t\tThe time that predictor-corrector method is used\n"<<endl; 

  cout<<"\t[central_object]:\tAn optional argument."<<endl; 
  cout<<"\t                \tSet one of the planets as central body,"<<endl; 
  cout<<"\t                \tand the relative position \"xr\" \"yr\" \"zr\","<<endl; 

  cout<<"\t                \trelative velocity \"vxr\" \"vyr\" \"vzr\", "<<endl; 
  cout<<"\t                \tand distance to central body \"dist\""<<endl; 

  cout<<"\t                \tof other planets will be shown in the output file.\n"<<endl; 
  return 0; 

 } 
  
 if(argc != 5 && argc != 6) 

 { 
  cerr<<"Wrong arguments"<<endl; 

  return -1; 
 } 

  
 ifstream in(argv[3]); 
 if(!in) 

 { 
  cerr<<"File not found"<<endl; 

  return -1; 
 } 
 ofstream fout("planet_data.dat"); 

 const int ntime = atoi(argv[1]) / dt; 
 const int nplanet = atoi(argv[2]); 

 const int corrector = atoi(argv[4]); 
 int center = 0; 

  
 if(argc == 6) 



 { 
  center = atoi(argv[5]); 

  if((center > nplanet) || (center < 0)) 
  { 

   cerr<<"Wrong arguments"<<endl; 
   return -1; 

  } 
 } 
  

 planet *p = new planet[nplanet]; 
  

 for(int i = 0; i < nplanet; i++) 
 { 

  double m, x, y, z, vx, vy, vz; 
  in>>m; 
  in>>x; 

  in>>y; 
  in>>z; 

  in>>vx; 
  in>>vy; 

  in>>vz; 
  p[i].initplanet(m, x, y, z, vx, vy, vz, ntime); 
 } 

  
 for(int t = 0; t < ntime; t++) 

 { 
  for(int i = 0; i < nplanet; i++) 

  { 
   p[i].a.setvector(0, 0, 0); 
   for(int j = 0; j < nplanet; j++) 

   { 
    if(i != j) 

    { 
     vector r = p[i].r[t] - p[j].r[t]; 

     r = (p[j].m / pow(r.length(), 3)) * r; 
     p[i].a = p[i].a - r; 
    } 

   } 
  } 

  for(int i = 0; i < nplanet; i++) 
  { 

   vector dr = dt * p[i].v[t]; 
   vector dv = dt * p[i].a; 
   p[i].r[t + 1] = p[i].r[t] + dr; 

   p[i].v[t + 1] = p[i].v[t] + dv; 
  } 

  predictorcorrector(p, t, dt, corrector, nplanet); 
 } 

  
 fout<<"Time\t"; 
 for(int i = 0; i < nplanet; i++) 

 { 
  fout<<"Planet"<<(i + 1)<<"x\tPlanet"<<(i + 1)<<"y\tPlanet"<<(i + 1)<<"z\tPlanet"<<(i + 

1)<<"vx\tPlanet"<<(i + 1)<<"vy\tPlanet"<<(i + 1)<<"vz\t"; 
  if((center > 0) && (i != (center - 1))) 
  { 

   fout<<"Planet"<<(i + 1)<<"xr\tPlanet"<<(i + 1)<<"yr\tPlanet"<<(i + 1)<<"zr\tPlanet"<<(i + 
1)<<"vxr\tPlanet"<<(i + 1)<<"vyr\tPlanet"<<(i + 1)<<"vzr\tPlanet"<<(i + 1)<<"dist\t"; 

  } 
 } 

 fout<<endl; 
 for(int t = 0; t <= ntime; t+=1000) 



 { 
  fout<<t * dt<<"\t"; 

  for(int i = 0; i < nplanet; i++) 
  { 

   fout<<p[i].r[t]<<"\t"<<p[i].v[t]<<"\t"; 
   if((center > 0) && (i != (center - 1))) 

   { 
    vector rr = p[i].r[t] - p[center - 1].r[t]; 
    vector vr = p[i].v[t]-p[center - 1].v[t]; 

    fout<<rr<<"\t"<<vr<<"\t"<<rr.length()<<"\t"; 
   } 

  } 
  fout<<endl; 

 } 
 cout<<"Output file:\tplanet_data.dat"<<endl; 
 delete []p; 

 return 0; 
} 

 
 


