
Numerical simulation of orbital resonance under

gravitational field and stability analysis

Zhen Li

Department of Physics, Southeast University

April 14, 2019

Abstract: Some types of orbital resonance under gravitational field has been simulated

in numerical way with the Eular method improved by predictor-corrector method in this paper.

Here presents the introduction of orbital resonance, the algorithm of numerical calculation, the

simulation results and comparison with real orbital resonance, such as that between Jupiter

and asteroid belt.

Key Words: orbital resonance, numerical simulation, Eular method.

I. Introduction to orbital resonance

Orbital resonance occurs when orbiting

bodies regularly influence each other with

gravity, which usually because their orbit

periods are related by a ratio of small integers

(Wikipedia, 2019). In most cases, it results in

an unstable interaction, two orbiting bodies

changing orbits until the resonance no longer

exists, for example, the gaps in the rings of

Saturn. However, an orbital resonance

system can be stable in some circumstances,

such as the 1:2:4 resonance of Jupiter’s

moons Ganymede, Europa and Io.

II. Algorithm of numerical calculation

Orbital resonance can be simulated by a

many-body system. For celestial body i, the

acceleration

𝒂𝒊 = 𝒓̈𝒊= G ∑
𝑚𝑗 (𝒓𝒋 − 𝒓𝒊)

‖𝒓𝒋 − 𝒓𝒊‖
3

𝑗 ≠𝑖

in which 𝑚𝑗 and 𝒓𝒋 separately refer to the

mass and position vector of celestial body j.

Then take a small step 𝜏 from time k to

k + 1 and apply to the Eular method (Pang,

2011).

𝒗𝒊

(𝒌+𝟏)
= 𝒗𝒊

(𝒌)
+ 𝜏𝒂𝒊

(𝒌)
+ 𝑂(𝜏2)

𝒓𝒊

(𝒌+𝟏)
= 𝒓𝒊

(𝒌)
+ 𝜏𝒗𝒊

(𝒌)
+ 𝑂(𝜏2)

To be more accurate, predictor-corrector

method is applied after calculating all of

vectors v and r (Pang, 2011).

𝒗𝒊

(𝒌+𝟏)
= 𝒗𝒊

(𝒌)
+

𝜏

2
(𝒂𝒊

(𝒌)
+ 𝒂𝒊

(𝒌+𝟏)
) + 𝑂(𝜏3)

𝒓𝒊

(𝒌+𝟏)
= 𝒓𝒊

(𝒌)
+

𝜏

2
(𝒗𝒊

(𝒌)
+ 𝒗𝒊

(𝒌+𝟏)
) + 𝑂(𝜏3)

All of the vectors are resoluble in

Cartesian system Oxyz. As for the program,

there is no much difficulty describing vectors

and their operation.

It is necessary to simulate a two-body

system with the aim of simply verifying the

algorithm. The parameters are as follows.

i 𝑚𝑖 𝒓𝒊
(𝟎)

 𝒗𝒊
(𝟎)

 k

1 10000 (0,0,0) (0,0,0)
1

2 1 (1,0,0) (0,100,0)

Theoretically celestial body 1 should be

almost stay static while celestial body 2 need

to have a nearly circular orbit in surface xOy.

Set 𝜏 = 0.001 and total simulation

time T = 10. The motion of two celestial body

fits in with the expectation (Fig.1). The

deviation can be explained by the influence

of gravity that celestial body 2 has.

Fig.1 Orbit of celestial body 1(upper) and 2(below).

III. Simulation results and comparison

with real orbital resonance

Firstly consider a much smaller asteroid

added to a star-planet system (like the system

simulated in II) while the ratio of their initial

orbit period is a simple fraction. Set 𝜏 =

0.001, T = 1000, and the simulation results

show that orbital resonance 1/2 (Fig.2), 3/7

(Fig.3), 2/5 (Fig.4) and 1/3 (Fig.5) are not

stable for long period of time.

Fig.2 Resonance 1/2, orbit (upper) and distance to center star (below)

Fig.3 Resonance 3/7, orbit (upper) and distance to center star (below)

Fig.4 Resonance 2/5, orbit (upper) and distance to center star (below)

Fig.5 Resonance 1/3, orbit (upper) and distance to center star (below)

Fig.6 Asteroid main-belt distribution (Wikipedia, 2019)

Interestingly, in asteroid belt, there are

few asteroids which orbit periods are 1/2,

3/7, 2/5, or 1/3 time of Jupiter (Fig.6). The

gaps there are known as Kirkwood gaps.

Fig.7 Orbital resonance 1:2:4, orbits (upper) and distance to center

star (below).

Fig.8 Orbital resonance of Jupiter’s moons (Wikipedia, 2019).

In addition, there are also stable orbital

resonances, for example, resonance 1:2:4

(Fig.7), which is the one of Jupiter’s moons

Ganymede, Europa and Io (Fig.8). Below are

one set of parameters of this type of

resonance.

i 𝑚𝑖 𝒓
𝒊

(𝟎)
 𝒗

𝒊

(𝟎)
 k

1 10000 (0,0,0) (0,0,0)

1
2 1 (1,0,0) (0,100,0)

3 1 (1.5874,0,0) (0,79.37008,0)

4 1 (2.51984,0,0) (0,62.99608,0)

Another stable resonance exists at 3/2

(Fig.9), which is the ratio of orbit period

between Neptune and Pluto. Below are one

possible set of parameters.

Fig.9 Resonance 3/2, orbits (upper) and distance to center star (below).

i 𝑚𝑖 𝒓
𝒊

(𝟎)
 𝒗

𝒊

(𝟎)
 k

1 10000 (0,0,0) (0,0,0)

1 2 1 (1,0,0) (0,100,0)

3 0.1 (1.31037,0,0) (0, 87.358046,0)

What’s more, mass of orbital-resonance

objects has little influence on the stability

(Fig.10, Fig.11).

Fig.10 Resonance 1/2

Upper: mass 0.1, 1

Middle: mass 0.5, 1

Below: mass 1, 1

Fig.11 Resonance 3/2

Upper: mass 0.5, 1

Below: mass 1, 1

IV. Conclusion

With the help of numerical simulation, a

set of stable/unstable orbital resonances are

found, which can explain some astronomical

phenomena. The Algorithm here is also

suitable for many-body system. However,

perturbation theory in celestial mechanics is

needed to have a deeper understanding of

orbital resonance (李广宇, 2015).

References:

Pang, T. (2011). Predictor-corrector methods.

Wikipedia. (2019). Orbital resonance. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Orbital_resonance

李广宇. (2015). 普遍摄动理论. In 李广宇, 天体测量和天体

力学基础 (pp. 160-166).

/*
 * Useage: time number_of_planet planet_file correct_time [central_object]

 *
 * time: The total simulation time.

 *
 * number_of_planet: The total number of planet to be simulated.

 *
 * planet_file: The text file with initial values of all the planets.
 * Each line contains the information of one planet.

 * The format needs to be:
 * mass position_x position_y position_z velocity_x velocity_y velocity_z

 * The program will not check the validity of data given.
 *

 * correct_time: The time that predictor-corrector method is used
 *
 * [central_object]: An optional argument.

 * Set one of the planets as central body,
 * and the relative position "xr" "yr" "zr",

 * relative velocity "vxr" "vyr" "vzr",
 * and distance to central body "dist"

 * of other planets will be shown in the output file.
 */

#include <iostream>
#include <fstream>

#include <cmath>
#include <string.h>

using namespace std;

const double dt = 0.001;

class vector
{

 double x;
 double y;
 double z;

public:
 vector(double xx = 0, double yy = 0, double zz = 0)

 {
 x = xx;

 y = yy;
 z = zz;
 }

 friend vector operator +(vector &a, vector &b);
 friend vector operator -(vector &a, vector &b);

 friend vector operator *(double n, vector &v);
 friend ostream &operator <<(ostream &out, vector &v);

 double length()
 {
 return sqrt(x * x + y * y + z * z);

 }
 void setvector(double xx = 0, double yy = 0, double zz = 0)

 {
 x = xx;
 y = yy;

 z = zz;
 }

};

ostream &operator <<(ostream &out, vector &v)
{

 out<<v.x<<'\t'<<v.y<<'\t'<<v.z;
 return out;

}

vector operator *(double n, vector &v)
{

 vector r(n * v.x, n * v.y, n * v.z);
 return r;
}

vector operator -(vector &a, vector &b)

{
 vector r(a.x - b.x, a.y - b.y, a.z - b.z);

 return r;
}

vector operator +(vector &a, vector &b)
{

 vector r(a.x + b.x, a.y + b.y, a.z + b.z);
 return r;

}

class planet

{
public:

 vector *r = 0;
 vector *v = 0;

 vector a;
 double m;
 planet()

 {
 ;

 }
 ~planet()

 {
 if(r)
 delete []r;

 if(v)
 delete []v;

 }
 void initplanet(double m, double x, double y, double z, double vx, double vy, double vz, int n)

 {
 (*this).m = m;
 r = new vector[n + 1];

 v = new vector[n + 1];
 r[0].setvector(x, y, z);

 v[0].setvector(vx, vy, vz);
 }

};

void predictorcorrector(planet p[], const int i, const double dt, const int iteration, const int nplanet)

{
 for(int k = 0; k < iteration; k++)

 {
 for(int n = 0; n < nplanet; n++)
 {

 vector rp = p[n].v[i] + p[n].v[i + 1];
 rp = (dt / 2) * rp;

 rp = rp + p[n].r[i];
 vector a1(0, 0, 0);

 vector a2(0, 0, 0);
 for(int j = 0; j < nplanet; j++)

 {
 if(n != j)

 {
 vector r1 = p[n].r[i] - p[j].r[i];

 r1 = (p[j].m / pow(r1.length(), 3)) * r1;
 a1 = a1 - r1;

 vector r2 = p[n].r[i + 1] - p[j].r[i + 1];
 r2 = (p[j].m / pow(r2.length(), 3)) * r2;
 a2 = a2 - r2;

 }
 }

 vector vp = a1 + a2;
 vp = (dt / 2) * vp;

 vp = vp + p[n].v[i];
 p[n].r[i + 1] = rp;
 p[n].v[i + 1] = vp;

 }
 }

}

int main(int argc, char *argv[])
{
 if(argc == 1)

 {
 cout<<"Useage:\ttime number_of_planet planet_file correct_time [center_object]\n"<<endl;

 cout<<"\ttime:\t\t\tThe total simulation time.\n"<<endl;
 cout<<"\tnumber_of_planet:\tThe total number of planet to be simulated.\n"<<endl;

 cout<<"\tplanet_file:\t\tThe text file with initial values of all the planets."<<endl;
 cout<<"\t \t\tEach line contains the information of one planet."<<endl;
 cout<<"\t \t\tThe format needs to be:"<<endl;

 cout<<"\t \t\tmass position_x position_y position_z velocity_x velocity_y
velocity_z\n"<<endl;

 cout<<"\t \t\tThe program will not check the validity of data given."<<endl;
 cout<<"\tcorrect_time:\t\tThe time that predictor-corrector method is used\n"<<endl;

 cout<<"\t[central_object]:\tAn optional argument."<<endl;
 cout<<"\t \tSet one of the planets as central body,"<<endl;
 cout<<"\t \tand the relative position \"xr\" \"yr\" \"zr\","<<endl;

 cout<<"\t \trelative velocity \"vxr\" \"vyr\" \"vzr\", "<<endl;
 cout<<"\t \tand distance to central body \"dist\""<<endl;

 cout<<"\t \tof other planets will be shown in the output file.\n"<<endl;
 return 0;

 }

 if(argc != 5 && argc != 6)

 {
 cerr<<"Wrong arguments"<<endl;

 return -1;
 }

 ifstream in(argv[3]);
 if(!in)

 {
 cerr<<"File not found"<<endl;

 return -1;
 }
 ofstream fout("planet_data.dat");

 const int ntime = atoi(argv[1]) / dt;
 const int nplanet = atoi(argv[2]);

 const int corrector = atoi(argv[4]);
 int center = 0;

 if(argc == 6)

 {
 center = atoi(argv[5]);

 if((center > nplanet) || (center < 0))
 {

 cerr<<"Wrong arguments"<<endl;
 return -1;

 }
 }

 planet *p = new planet[nplanet];

 for(int i = 0; i < nplanet; i++)
 {

 double m, x, y, z, vx, vy, vz;
 in>>m;
 in>>x;

 in>>y;
 in>>z;

 in>>vx;
 in>>vy;

 in>>vz;
 p[i].initplanet(m, x, y, z, vx, vy, vz, ntime);
 }

 for(int t = 0; t < ntime; t++)

 {
 for(int i = 0; i < nplanet; i++)

 {
 p[i].a.setvector(0, 0, 0);
 for(int j = 0; j < nplanet; j++)

 {
 if(i != j)

 {
 vector r = p[i].r[t] - p[j].r[t];

 r = (p[j].m / pow(r.length(), 3)) * r;
 p[i].a = p[i].a - r;
 }

 }
 }

 for(int i = 0; i < nplanet; i++)
 {

 vector dr = dt * p[i].v[t];
 vector dv = dt * p[i].a;
 p[i].r[t + 1] = p[i].r[t] + dr;

 p[i].v[t + 1] = p[i].v[t] + dv;
 }

 predictorcorrector(p, t, dt, corrector, nplanet);
 }

 fout<<"Time\t";
 for(int i = 0; i < nplanet; i++)

 {
 fout<<"Planet"<<(i + 1)<<"x\tPlanet"<<(i + 1)<<"y\tPlanet"<<(i + 1)<<"z\tPlanet"<<(i +

1)<<"vx\tPlanet"<<(i + 1)<<"vy\tPlanet"<<(i + 1)<<"vz\t";
 if((center > 0) && (i != (center - 1)))
 {

 fout<<"Planet"<<(i + 1)<<"xr\tPlanet"<<(i + 1)<<"yr\tPlanet"<<(i + 1)<<"zr\tPlanet"<<(i +
1)<<"vxr\tPlanet"<<(i + 1)<<"vyr\tPlanet"<<(i + 1)<<"vzr\tPlanet"<<(i + 1)<<"dist\t";

 }
 }

 fout<<endl;
 for(int t = 0; t <= ntime; t+=1000)

 {
 fout<<t * dt<<"\t";

 for(int i = 0; i < nplanet; i++)
 {

 fout<<p[i].r[t]<<"\t"<<p[i].v[t]<<"\t";
 if((center > 0) && (i != (center - 1)))

 {
 vector rr = p[i].r[t] - p[center - 1].r[t];
 vector vr = p[i].v[t]-p[center - 1].v[t];

 fout<<rr<<"\t"<<vr<<"\t"<<rr.length()<<"\t";
 }

 }
 fout<<endl;

 }
 cout<<"Output file:\tplanet_data.dat"<<endl;
 delete []p;

 return 0;
}

