
Monte Carlo methods for 2D Heisenberg Model of magnetic two-

dimensional material 
Yehui Zhang 171767 

(Southeast University, Nanjin, Jiangsu, 211189, China) 
ABSTRACT: This study aim at the Monte Carlo method of 2D Heisenberg Model. Before I  
perform the Monte Carlo simulation, distribution of points on the spherical surface and Monte Carlo 
change of each step were the main issues we investigated. Here we systematically study a 2D 
ferromagnetic monolayer CrI3 which was first one be measured the average Tc for the monolayer 
samples to be 45K. Summary of previous work, Ising Model may overestimate the Curie 
temperature. Therefore, this article would preform the Monte Carlo method by using 2D Heisenberg 
Model to simulate monolayer CrI3. 
Keywords: 2D Heisenberg Model(XYZ), Monte Carlo method, Curie temperature, distribution.

Ⅰ. Introduction 
The statistical mechanics of complex physical systems poses 
many hard problems which are difficult to solve by 
analytical approaches. Numerical simulation techniques will 
therefore be indispensable tools on our way to a better 
understanding of. The numerical tools can roughly be 
divided into molecular dynamics (MD) and Monte Carlo 
(MC) simulations. 
  In physics-related problems, Monte Carlo methods are 
useful for simulating systems with many coupled degrees of 
freedom, such as fluids, disordered materials, strongly 
coupled solids, and cellular structures. In principle, Monte 
Carlo methods can be used to solve any problem having a 
probabilistic interpretation. By the law of large numbers, 
integrals described by the expected value of some random 
variable can be approximated by taking the empirical mean 
of independent samples of the variable. When the 
probability distribution of the variable is parametrized, 
mathematicians often use a Markov chain Monte Carlo 
(MCMC) sampler. The central idea is to design a judicious 
Markov chain model with a prescribed stationary probability 
distribution. 
 
Ⅱ. Heisenberg Model 
The classical Ising model and the classical Heisenberg 
model are both simplified models of magnetism in materials. 
In the Ising model, there are spins Si that can take on the 
values +1 or −1 living on each of N sites of a lattice. We'll 
leave the shape and dimensionality of the lattice unspecified 
for now. Typically, the spins interact with their nearest 
neighbors, with the energy of a configuration of spins given 
by: 

HIsing=−J·∑<ij>SiSj 

  Here, the sum over <ij> runs over all nearest-neighbor 
pairs of sites on the lattice. If J<0, it's energetically 

preferable for neighboring spins to point in opposite 
directions, while if J>0, it's energetically preferable for 
neighboring spins to point in the same direction. In two 
dimensions or greater, the Ising model exhibits a continuous 
phase transition between a low-temperature ordered 
(ferromagnetic) phase and a high-temperature disordered 
(paramagnetic) phase with zero average magnetization. 
   The Heisenberg model looks very similar, except that the 
spins Si are three-dimensional unit vectors that can point 
anywhere on the unit sphere. The energy function for a 
configuration of spins is instead: 

HHeisenberg=−J·∑<ij>Ŝi⋅Ŝj 

 
Ⅲ. Distribution 
First, initializing the spin state should be discuss before 
performing the monte carlo method. In order to get a 
uniform distribution, five different kinds of distribution 
methods would be study. 
① Phi-Z (aka Phi-cos[Theta]) 

Phi = rand(-pi,pi) 
Thtea = arccos(rand(-1,1)) 
X = cos(Phi)*sin(Thtea) 
Y = sin(Phi)*sin(Theta) 

Z = cos(Theta) 
Code 1. Phi-Z method Generator 

void phi_z(Point& tmp, mt19937& rng) 
{ 
    const uniform_real_distribution<double> rand(-1, 1); 
    tmp.phi = M_PI * rand(rng); 
    tmp.theta = acos(rand(rng)); 
    tmp.x = cos(tmp.phi) * sin(tmp.theta); 
    tmp.y = sin(tmp.phi) * sin(tmp.theta); 
    tmp.z = cos(tmp.theta); 
} 
 



② Theta-Phi 
Phi = rand(0,2*pi) 
Thtea = rand(0,pi) 

X = cos(Phi)*sin(Thtea) 
Y = sin(Phi)*sin(Theta) 

Z = cos(Theta) 
Code 2. Theta-Phi method Generator 

void theta_phi(Point& tmp, mt19937& rng) 
{ 
    const uniform_real_distribution<double> rand(0, 2); 
    tmp.phi = M_PI * rand(rng); 
    tmp.theta = M_PI_2 * rand(rng); 
    tmp.x = cos(tmp.phi) * sin(tmp.theta); 
    tmp.y = sin(tmp.phi) * sin(tmp.theta); 
    tmp.z = cos(tmp.theta); 
} 
③ X-Y-Z 

X = rand(-1,1) 
Y = rand(-1,1) 
Z = rand(-1,1) 
Norm(X, Y, Z) 

Code 3. X-Y-Z method Generator 

void x_y_z(Point& tmp, mt19937& rng) 
{ 
    const uniform_real_distribution<double> rand(-1, 1); 
    const auto x = rand(rng), y = rand(rng), z = rand(rng); 
    const auto norm = sqrt(x * x + y * y + z * z); 
    tmp.x = x / norm; tmp.y = y / norm; tmp.z = z / norm; 
} 
④ X-Y-Z & abs()<=1 

X = rand(-1,1) 
Y = rand(-1,1) 
Z = rand(-1,1) 

Norm(X, Y, Z) & abs()<=1 
Code 4. X-Y-Z<1 method Generator 

void x_y_z_lessthan1(Point& tmp, mt19937& rng) 
{ 
    const uniform_real_distribution<double> rand(-1, 1);  
    auto x = 0.0, y = 0.0, z = 0.0, norm = 2.0; 
    for (; norm > 1;) 
    { 
        x = rand(rng); y = rand(rng); z = rand(rng); 
        norm = sqrt(x * x + y * y + z * z); 
    } 
    tmp.x = x / norm; tmp.y = y / norm; tmp.z = z / norm; 
} 
⑤X-Y-Z-Normal 

X = normal_rand(-1,1) 
Y = normal_rand(-1,1) 

Z = normal_rand(-1,1) 
Norm(X, Y, Z) 

Code 5. X-Y-Z-Normal method Generator 

void ormal_x_y_z(Point& tmp, mt19937& rng) 
{ 
    normal_distribution<double> rand(0, 1); 
    const auto x = rand(rng), y = rand(rng), z = rand(rng); 
    const auto norm = sqrt(x * x + y * y + z * z); 
    tmp.x = x / norm; tmp.y = y / norm; tmp.z = z / norm; 
} 
  Spherical coordinate system use theta phi and r three 
parameters to determine one point, naturely spherical 
surface distribution parameters choose theta and phi. 
However some studies point out that it was not a correctly 
distributed points generator. Technical application choose x 
y and z three parameters to determine one point, without 
theta and phi, thus application does not need transform. 
  Therefore, five different kinds of methods would be 
perform below. 

 
Figure 1.Phi-Z method distribution. (a).X-axis view (b).Y-axis view 

(c). Z-axis view (d). normal view 

 

 
Figure 2.Theta-Phi method distribution. (a).X-axis view (b).Y-axis 

view (c). Z-axis view (d). normal view 



 
Figure 3.X-Y-Z method distribution. (a).X-axis view (b).Y-axis view 

(c). Z-axis view (d). normal view 

 

 
Figure 4.X-Y-Z<=1 method distribution. (a).X-axis view (b).Y-axis 

view (c). Z-axis view (d). normal view 

 

 
Figure 5.X-Y-Z-Normal method distribution. (a).X-axis view (b).Y-

axis view (c). Z-axis view (d). normal view 

   
Apparently, Phi-Z method, X-Y-Z<1 method and X-Y-Z-
Normal method can generate correctly distributed points. 
For better performance, Compare the generator efficiency. 

 
Figure 6. Compare the generator efficiency 

 

  Different methods generated 50,000 points and repeated 
5,000 times. Phi-Z generator less stable which may caused 
by anti-trigonometric function. But average preformance 
much faster than X-Y-Z<=1 and X-Y-Z-Normal method. 
 
Ⅳ. Monte Carlo changes 
Second, Monte Carlo changes are much more important than 
distribution. Because for low temperture, initializing the 
spin state coule point at the same place. Simply, extending 
the Phi-Z generator method, Monte carlo changes could be 
minor change for phi and z. However, from where I stand, it 
was an Incorrectly change method. 
  Therefore three different kinds of method would perform 
below. 
① Phi-Z (aka Phi-cos[Theta]) 

Code 6. Phi-Z method change(move) 

void theta_z(Point& tmp, Point& start, mt19937& rng, const d
ouble delta) 
{ 
    const uniform_real_distribution<double> rand(-1, 1); 
    tmp.phi = start.phi + delta * M_PI * rand(rng); 
    tmp.z = start.z + delta * rand(rng); 
    if (tmp.z > 1) 
    { tmp.z = 2 - tmp.z; tmp.phi = 2 * M_PI - tmp.phi; } 
    if (tmp.z < -1) 
    { tmp.z = -2 - tmp.z; tmp.phi = 2 * M_PI - tmp.phi; } 
    tmp.theta = acos(tmp.z); 
    tmp.x = cos(tmp.phi) * sin(tmp.theta); 
    tmp.y = sin(tmp.phi) * sin(tmp.theta); 
    tmp.z = cos(tmp.theta); 
} 
 
 
 
 



② Inclined Angle 
Code 7. Inclined Angle method change(move) 

void inclined_angle(Point& tmp, Point& start, mt19937& rng,
 const double delta) 
{ 
    auto bak = start; 
    for (;;) 
    {  
        uniform_real_distribution<double> rand(-1, 1); 
        tmp.phi = M_PI * rand(rng); 
        tmp.theta = acos(rand(rng)); 
        tmp.x = cos(tmp.phi) * sin(tmp.theta); 
        tmp.y = sin(tmp.phi) * sin(tmp.theta); 
        tmp.z = cos(tmp.theta); 
        if (bak.x * tmp.x + bak.y * tmp.y + bak.z * tmp.z  
            - (1 - 2 * delta) > 0) break; 
    } 
} 
 
③ Euler Angle 

�
𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑝𝑝ℎ𝑖𝑖) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒) ∗ 𝑐𝑐𝑖𝑖𝑠𝑠 (𝑝𝑝ℎ𝑖𝑖) −𝑐𝑐𝑖𝑖𝑠𝑠 (𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒)

−𝑐𝑐𝑖𝑖𝑠𝑠(𝑝𝑝ℎ𝑖𝑖) 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑝𝑝ℎ𝑖𝑖) 0
𝑐𝑐𝑖𝑖𝑠𝑠(𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑝𝑝ℎ𝑖𝑖) 𝑐𝑐𝑖𝑖𝑠𝑠(𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒) ∗ 𝑐𝑐𝑖𝑖𝑠𝑠 (𝑝𝑝ℎ𝑖𝑖) 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒)

� 

 

Code 8. Euler Angle method change(move) 

void euler_angle(Point& tmp, Point& start, mt19937& rng, co
nst double delta) 
{ 
    const uniform_real_distribution<double> rand(0, 2); 
    const auto costhetai = cos(start.theta); 
    const auto sinthetai = sin(start.theta); 
    const auto cosphii = cos(start.phi); 
    const auto sinphii = sin(start.phi); 
  
    const auto phi = M_PI * rand(rng); 
    const auto theta = acos(1 - delta * rand(rng)); 
    const auto x = sin(theta) * cos(phi); 
    const auto y = sin(theta) * sin(phi); 
    const auto z = cos(theta); 
    tmp.x = costhetai * cosphii * x - sinphii * y  
        + sinthetai * cosphii * z; 
    tmp.y = costhetai * sinphii * x + cosphii * y 
        + sinthetai * sinphii * z; 
    tmp.z = -sinthetai * x + costhetai * z; 
} 

 

 
 
 

 
 

Figure 7.Phi-Z method change. (a).X-axis view (b).Y-axis view (c). 

Z-axis view (d). normal view 

 

 
 

Figure 8. Inclined Angle method change. (a).X-axis view (b).Y-axis 

view (c). Z-axis view (d). normal view 

 

 
Figure 9. Euler Angle method change. (a).X-axis view (b).Y-axis 

view (c). Z-axis view (d). normal view 

 

  Obviously, Inclined Angle method and Euler Angle 
method could generate correctly changes. Whereas the 



former is not stable, which performance may degenerate 
seriously in low temperture. 
 
Ⅴ. Curie temperature 
Up to now, CrI3 is the only one two-dimensional magnetic 
material which has been measured its Curie temperature to 
be 45K. Previously, some studies calculate its Curie 
temperture by using Ising Model. And the Curie temperature 
for CrI3 is estimated to be 107 K. However, Ising Model is 
widely believed overestimate the Curie temperture. 
  Definitions and symbols are defined below: 

<M> = (∑Mi) / ℕ  --  magnetization 
<H> = (∑Hi) / ℕ  --  internal energy 

χ(T)=[ <|M|2> - <|M|>2] / (kbT)  --  susceptibility 
Cv(T)=[ <H2> - <H>2] / (kbT2)  --  heat capacity 

   
  Now, using Ising Model’s data to simulate Heisenberg 
Model. 

H=−J·∑<ij>Ŝi⋅Ŝj and J = 2.519 meV 
 

 
Figure 10. CrI3 different lattice simulation’s energy, Heat capacity, 

magnetization and susceptibility  

 

 
Figure 11. With the lattice increases, the Curie temperture continues 

to decrease 

 

Meanwhile Mermin–Wagner theorem indicate that there is 
no phase with spontaneous breaking of a continuous 
symmetry for T>0, in 2D Heisenberg Model. However, 
adding magnetic anisotropy could fix it. Now, Hamiltinian 
to be: 
H=−J·∑<ij>Ŝi⋅Ŝj – A· Ŝz

2
 and J = 2.519 meV, A = 4.45meV 

 

Figure 12. CrI3 different lattice simulation’s energy, Heat capacity, 

magnetization and susceptibility  

 
Supplement: for Phi-Z method change 

 
Figure 13. CrI3 different lattice simulation’s energy, Heat capacity, 

magnetization and susceptibility  

This seems to achieve the same result for CrI3, but I still 
think this Monte Calro move is inappropriate.  
 
Ⅵ. Magnetic hysteresis loop 
For previous code, it could easily add mpi for different 
temperture even without MPI_Reduce, MPI_Allreduce and 
MPI_Barrier. But for magnetic hysteresis loop simulation, 
different magnetic state correlated. In order to simulate 
magnetic domain in real materials, we perform 100 times 
different initialization states with mpi, then average all the 
data by MPI_Allreduce and MPI_Barrier. 



 

Figure 14. Magnetic hysteresis loop for CrI3 in 40K 

 
Ⅶ. Conclusion 
This article focus on how to correctly perform Monte Carlo 
method by using 2D Heisenberg Model. By using Phi-Z 
generator method and Eular Angle move method to simulate 
Monte Carlo method. But we ignore the deinition of the unit, 
in-depth study should consider this issue. 
 
References 
[1] A. Codello and G. D'Odorico, Phys Rev Lett 110, 141601 (2013). 

[2] C. Gong et al., Nature 546, 265-269 (2017). 

[3] R. B. Griffiths, Physical Review 136, A437-A439 (1964). 

[4] B. Huang et al., Nature 546, 270-273 (2017). 

[5] M. Kan, J. Zhou, Q. Sun, Y. Kawazoe, and P. Jena, J Phys Chem 

Lett 4, 3382-3386 (2013). 

[6] H. Kumar, N. C. Frey, L. Dong, B. Anasori, Y. Gogotsi, and V. B. 

Shenoy, ACS Nano 11, 7648-7655 (2017). 

[7] X. Li, X. Wu, and J. Yang, J Am Chem Soc 136, 5664-5669 (2014). 

[8] X. Li, X. Wu, and J. Yang, J Am Chem Soc 136, 11065-11069 (2014). 

[9] X. Li and J. Yang, Journal of Materials Chemistry C 2, 7071 (2014). 

[10] J. Liu and Q. Sun, Chemphyschem 16, 614-620 (2015). 

[11] J. Liu, Q. Sun, Y. Kawazoe, and P. Jena, Phys Chem Chem Phys 

18, 8777-8784 (2016). 

[12] Y.-S. Liu, J.-H. Yong, H. Zhang, D.-M. Yan, and J.-G. Sun, 

Computer-Aided Design 38, 55-68 (2006). 

[13] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chemistry 

of Materials 27, 612-620 (2015). 

[14] M. E. Muller, Communications of the ACM 2, 19-20 (1959). 

[15] Z. Nehme, Y. Labaye, R. Sayed Hassan, N. Yaacoub, and J. M. 

Greneche, AIP Advances 5 (2015). 

[16] P. S. Rakić, S. M. Radošević, P. M. Mali, L. M. Stričević, and T. D. 

Petrić, Physica A: Statistical Mechanics and its Applications 441, 69-80 

(2016). 

[17] N. Samarth, Nature 546, 216 (2017). 

[18] Y. Sun, Z. Zhuo, X. Wu, and J. Yang, Nano Lett 17, 2771-2777 

(2017). 

[19] J. Zhou and Q. Sun, J Am Chem Soc 133, 15113-15119 (2011). 

[20] H. L. Zhuang, Y. Xie, P. R. C. Kent, and P. Ganesh, Physical Review 

B 92 (2015). 

 


