
Gradient descent method and conjugate
gradient method to solve linear equation

Wang Yitian

∗ 220171778, email:wyt141@gmail.com

Abstract: As homework for computational physics in SEU, this article is a simple realization
of gradient descent method and conjugate gradient method in solving linear equation Ax = b.

Keywords: gradient descent, conjugate gradient, linear equation

1. INTRODUCTION

Gradient method, such as gradient descent and conju-
gate gradient, is famous for solving constrained and un-
constrained optimization problems. Such method is thus
applied in vast areas like neural network training, energy
minimization problems and so on. However, the math-
ematics for gradient methods derivation is like bizarre
torture inflicted on students and tedious. It takes painful
effort to learn the gorgeous and meaningful maths, es-
pecially for people like me, who is not good at linear
algebra. In contrast, the image for such method is intuitive
and interesting, thus this article focuses on solving two-
dimensional linear equations to give readers an intuition
of the algorithms.

2. WHY LINEAR EQUATION CAN BE SOLVED BY
GRADIENT METHOD

This part gives the painless math to understand why we
can use gradient method to solve linear equation Ax = b,
other detailed derivation can easily be found by Google,
Bing or the reference.

Firstly, we can construct a quadratic form function

f(x) =
1

2
xTAx− bTx+ c (1)

2.1 Symmetric A

Then the gradient of (1) can be solved like:

f ′(x) =
1

2
ATx+

1

2
Ax− b (2)

Therefore, if A is symmetric, then AT = A, which means

f ′(x) = Ax− b (3)

Finally, we set (3) to be zero, Ax = b is thus be achieved,
which means solving the (1) optimization problem is equal
to solving linear equation.

2.2 Positive-definite A

To understand the trick, one can consider the one-
dimensional situation (see Fig. 1). It’s easy to figure out

Fig. 1. An example of one-dimensional quadratic form.

that for f(x) = 1
2ax

2 − bx + c, the solution of ax = b is
also the minimum point of f(x).

Of course, in order to make sure the solution is the
minimum point, a needs to be positive here, thus A
also needs to be positive-definite, which means for every
nonzero vector x,

xTAx > 0 (4)

This condition actually makes sure x is the global min-
imum solution. In addition, negative-definite also works,
since the result of negating the negative-definite matrix is
positive-definite.

3. RESULTS

This part gives the result of solving a simple two-
dimensional quadratic form function (1), where

A =

[
3 2
2 6

]
b =

[
2
−8

]
c = 0 (5)

Since A is a symmetric and positive-definite matrix, it can
be seen from Fig. 2 and Fig. 3 that the minimum point of
f(x) is the global minimum.

3.1 Gradient descent method

One hard thing about gradient descent method is adjusting
step size α, a big α can cause the loss of convergence while

Fig. 2. The example of two-dimensional quadratic form
f(x).

Fig. 3. The corresponding contour graph of Fig. 2, where
the minimum x is [−2− 2]T .

a small one yields high cost of computational resources.
However, when solving linear equation problems, the dif-
ficulty can be overcome by simplistic maths, which gives
the exact value of α. To convenient the derivation, residual
r is defined as

ri = b−Axi (6)

, which indicates how far x is from the correct value
b. Importantly, Equation 6 is also equal to negating
Equation 3, meaning a simplistic property that residual
r is also the negating gradient. So, we can further get
−f ′(xi+1) = ri+1.

To minimize f(xi+1) by choosing α, we should thus solve
d
dαf(xi+1) = 0 from basic calculus:

d

dα
f(xi+1) = f ′(xi+1)T

d

dα
xi+1 = −rTi+1ri = 0 (7)

And after tedious maths of solving Equation 7,we can get
the annoying α in a simple form:

Fig. 4. Recursive trajectory of gradient descent method,
where x starts from [−2− 2]T

rTi+1ri = 0
(b−Axi+1)T ri = 0
(b−A(xi + αri))

T ri = 0
rTi ri − α(Ari)

T ri = 0

α =
rTi ri
rTi Ari

(8)

Therefore, based on Equation 8, pseudo-code is listed in
Algorithm 1 and an example result where x starts from
[−2− 2]T can be seen in Fig. 4.

Algorithm 1 Gradient Descent Method

1: initial start point x and negative gradient r = b−Ax
2: repeat
3: q = Ar

4: step size α = rT r
rT q

5: renew point x = x+ αr
6: renew gradient r = r − αq or r = b−Ax
7: until (rT r < epsilon)

3.2 Conjugate gradient method

Though gradient descent method is effective, the zigzag
trajectory seems rather painful which costs foreseeable
computational resources. Therefore, to overcome the itera-
tion barrier, conjugate gradient method is here introduced.
Different from descent method, gradient ri is not used
as the search direction. But since gradient has perfect
orthogonal property(see Equation 8):

rirj = 0, i 6= j (9)

, gradient r span {r0, r1, r2, ..., ri} is used to construct
search directions, where

di = ri + βidi−1 (10)

and di satisfies the property:

diAdj = 0, i 6= j (11)

Then the pseudo-code is presented in algorithm 2, the
difference from the algorithm 1 is the special A-orthogonal
vector, thus the step size α value should be changed and
coefficient β value is introduced for construction. 1

1 Detailed mathematics can be found in reference: Shewchuk (1994),
this article will not involve the details since the author doesn’t think
he can do better.

Fig. 5. Recursive trajectory of conjugate gradient method,
where x starts from [−2− 2]T

In conclusion, the results of x starting from [−2 − 2]T

can be seen in Fig. 5. only 2 iterations was conducted,
attributed to the improved search direction.

Algorithm 2 Conjugate Gradient Method

1: initial start point x, negative gradient rold = b − Ax
and search direction d = rold

2: repeat
3: q = Ad

4: step size α =
rToldrold
dT q

5: renew point x = x+ αd
6: renew residual rnew = rold− αq or rnew = b−Ax
7: β =

rTnewrnew

rT
old
rold

8: renew d = rnew + βd
9: rold = rnew

10: until (rTnewrnew < epsilon)

3.3 Iteration Comparison Between Gradient Descent and
Conjugate Gradient

To further confirm the effectiveness of A-orthogonal search
direction d, 18×18 points were sampled for compari-
son. As shown in Fig. 6, z-axis represents Iteration(GD)-
Iteration(CG) and z(x) ≥ 0, which means for all the
sampled points, conjugate gradient is an effective improve-
ment. In addition, one can see that, at some points, conju-
gate gradient behaves the same as gradient descent. That’s
because these points only take one iteration to solve the
problem and in this situation conjugate gradient is equal
to gradient descent since r0 = d0.

In fact, for a n-dimensional problem, conjugate gradient
only takes at most n iterations to solve it theoretically.
Though there are round-off error, which may cause the loss
of A-orthogonal property, conjugate gradient is generally
considered to be superior than gradient descent.

4. DISCUSSION AND CONCLUSION

In conclusion, this article is a simple realization of gradient
method solving linear equation A = bx, where A should be
a symmetric and positive-definite n×n matrix. In this sit-
uation, conjugate gradient is superior to gradient descent
if we overlook the round-off error.

Fig. 6. Iteration Comparison Between Gradient De-
scent and Conjugate Gradient, the z-axis represents
Iteration(GD)-Iteration(CG).

However, cruel reality and marvelous nature always de-
struct the simplicity of matrix A, which means A could
be non-symmetric or indefinite and then a quadratic form
function cannot be used. This can be solved by construct-
ing other functions, such as min|Ax− b|2. Moreover, con-
jugate gradient, like gradient descent, can also be used to
minimize any continuous function f(x) for which the gradi-
ent f can be computed. The difference can be concluded in
three aspects: first, gradient cannot be solved in a recursive
way;second, step size α can be hard to compute and third,
coefficient β can be chosen by several ways.

ACKNOWLEDGEMENTS

Thanks for Dr.Dong’s detailed instruction on computa-
tional physics and thank my supervisor Dr.Chen for al-
lowing me to learn something I enjoy.

REFERENCES

Shewchuk, J.R. (1994). An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain. School
of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA 15213.

