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Abstract 

The modeling of infectious diseases is a tool which has been used to study the mechanisms by 

which diseases spread, to predict the future course of an outbreak and to evaluate strategies to control 

an epidemic. SI, SIS, SIR models[1] are three basic dynamics models of infectious disease. In this paper, 

we generate the models by simulating the process of disease propagation in a more realistic way and 

describe in detail the impacts of diverse conditions on the process. Before we come to a conclusion, 

we investigate more complex conditions such as different probabilities of contacting between each 

other. Finally, we give some suggestions[2] on preventing infectious disease based on what we get from 

the simulations. 

Key Words: infectious disease dynamics; SI, SIS, SIR models; realistic simulation; 
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1.Introduction 

Every year or several years, various 

viruses attacked us human beings or animals, 

which seriously endanger our assets and 

lives. For quite some time, Investigation of 

the mathematical model of infectious 

diseases to describe the spread of infectious 

diseases and the way to prevent or stop the 

propagation remain the focus of attention of 

experts and doctors. Early in the year of 

1662, a scientist called John Graunt firstly 

systematically quantified causes of death by 

listing the numbers and causes of deaths 

publiced weekly, the analysis of which is 

considered the beginning of the “theory of 

competing risks”[3].The main idea of the 

method is well used among modern 

epidemiologists according to Daley and 

Gani. Later in the year of 1766, Daniel 

Bernoulli created a mathematical model to 

defend the practice of inoculating against 

smallpox, which preceded the development 

of germ theory. After Ronald Ross’s 
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research on the spread malaria, the modern 

theoretical epidemiology began, among 

which SI , SIR, SIS models are three basic 

dynamics models of infectious disease. 

Dynamics of infectious diseases, is one of 

the most important theoretical quantitative 

studies method. Based on the characteristics 

of population growth, the occurrence and 

spread of disease in the population, as well 

as related social and other factors, a 

mathematical model was established to 

reflect the dynamic characteristics of 

infectious diseases, analyze the 

development of the disease, reveal the 

epidemic law, and predict the trend of 

disease. It also plays a significant role in 

finding the optimal strategy for prevention 

and control and providing theoretical basis. 

The models[4] mentioned above are 

types of deterministic compartmental 

models, in which individuals in the 

population are assigned to different 

subgroups or compartments, each 

representing a specific stage of the epidemic 

but with a probability to get contacted 

reciprocally. Based on these models, experts 

related can have a breakthrough in 

researching the growth of viruses, the 

spread of infectious diseases and the actions 

of drugs.  

In this paper, firstly we will analyze   

the SI , SIR , SIS models and simulate the 

process of disease propagation respectively 

to make a comparison of the models, and 

change the parameters to see the impacts of 

one model. Secondly, we will regard the 

probability to get contacted as a variable, for 

as we all know, we tend to approach the 

acquaintance and stay away from strangers. 

Finally, suggestion will be given based on 

the results of above work. 

 

2. Models and Methods 

2.1 SI model 

SI is an abbreviation of susceptible and 

infected. 

2.1.1 Model: 

a) The total population size remains 

invariant, set as N; 

b) The probability to get into contact 

each other is deterministic, set as λ; 

c) Once meeting the infected, one is to be 

infectious; 

d) Once some individual is infected, it 

will never recover and stays infected 

as well as infectious to another 

susceptible. 

 

2.1.2 Method: 

Let S0 be the number of susceptibles at 

time t=0; 

Let S(t) be the number of susceptibles 

at time t; 

Let I(t) be the number of infected  

at time t; 

We have:  

S(t)+ I(t)=N; 

S(0)= S0; 

d I(t)/dt=λ*S(t)*I(t)/N. 

       Absolutely, we can get the solution: 

      I(t)=1/(1+(1/(N- S0)-1)*exp(-λt)) 

       However, in this paper, we will go to 

see the process of spread of the 
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infectious disease. 

Firstly, we generate a two dimensional 

grid L*L, each individual takes up one grid. 

Secondly, we choose one to be infected 

randomly; 

Thirdly, we use the random number 

generators to judge whether the susceptible 

is infected or not. At the same time, we can 

count the number of susceptibles and 

infected, which must satisfy the equations 

above if N is large enough. 

Finally, we will get the simulating 

process. 

 

2.2 SIR model 

SIR stands for susceptible, infected and 

recover with immunity. 

2.2.1 Model:  

a) The total population size remains 

invariant, set as N; 

b) The probability to get into contact 

each other is deterministic, set as λ; 

c) Every infected individual can recover 

with a deterministic probability, set as 

μ; 

d) Once some individual recovers, it  

will never get infected again.  

 

2.2.2 Method: 

Let S0 be the number of susceptibles 

at time t=0; 

Let S(t) be the number of susceptibles 

at time t; 

Let I(t) be the number of infected  

at time t; 

Let R(t) be the number of removals at 

time t， R(0)=0. 

We have:  

S(t)+ I(t)+R(t)=N; 

S(0)= S0; 

R(0)=0; 

dI(t)/dt=λ*S(t)*I(t)/N-μ*R(t); 

dS(t)/dt=-λ*S(t)*I(t) 

   Absolutely, we cannot get the analytic 

solutions directly, but we can have a 

discussion on the set of equations, before 

which we can have a simulation similar to 

SI model.  

The main difference is in the third step, 

while the is infectious to others, itself can 

recover as a removal with the probability 

of μ.Note that once having recovered, 

one will never get infected again. 

 

2.3 SIS model 

    SIS represents for susceptible, 

infected and susceptible. 

2.3.1 Model:  

a) The total population size remains 

invariant, set as N;  

b) The probability to get into contact each 

other is deterministic, set asλ1; 

c) Once meeting the infected, one is to be 

infectious; 

d) Every infected individual can recover 

with a deterministic probability; 

e) After recovering, one has a probability to 

get infected again, which in this paper is 

different from the probability for the 

susceptible who get infected for the first 

time, set asλ2. 
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2.3.2 Method:  

Let S0 be the number of susceptibles at 

time t=0; 

Let S(t) be the number of susceptibles 

at time t; 

Let I(t) be the number of the infected  

at time t; 

Let R(t) be the number of removals at 

time t,R(0)=0. 

We have:  

S(t)+ I(t)+R(t)=N; 

S(0)= S0; 

R(0)=0; 

dI(t)/dt=I(t) *(λ1*S(t) +λ2* 

R(t))/ N-μ*I(t); 

dS(t)/dt=-λ*S(t)*I(t)/N; 

Absolutely, we cannot get the analytic 

solutions directly, but we can have a 

simulation to see the spread of the 

infectious diseases. 

Obviously the main difference with SI, 

SIR models is in the third step as well, 

where the susceptibles and the removals 

both has the probability of getting 

infected, and the infected may also 

recover. More complex, much closer to 

the fact, of course. 

 

2.4 SHM model 

  SHM is an acronym of Sun Hui min, for 

the model is based on my comprehension 

of the models mentioned above and 

consideration of the different contact rate 

among individuals.  

Based on the SIS model, we establish the 

SHM model. Generally, we tend to 

approach the acquaintance and stay away 

from strangers, hence we put the 

individuals into a two dimensional grid 

L*L, the summation of the row and column 

coordinate is regarded as a parameter 

related to the contact rate, set as RC, the 

difference of which is inversely 

proportional to the contact rate (here called 

infection rate) between two individuals. 

Substitute λ1/RC  and 

λ2/RC forλ1 and λ2 respectively, we 

will get new simulation. 

 

3. Algorithm 

As analyzed above, there some 

common points among four models, 

such as how to get the first one 

infected and  how to output the data. 

 

3.1 Type of the individual 

 

  

3.2 Initiate of the individual 

Note: the number of the initial infected 

persons is just one for SI and SHM model, and 

L(one in each row for the dyadic array) for SIR 

and SIS model, we should change it manually.. 



 

 5 / 14 
 

 

3.3 Output of the data 

File data.dat is used to store whether he 

individual is infected or not after some 

time. 

File count_inf.dat is used to store the 

number of the infected individuals after 

some time; 

File count_rev.dat is used to store the 

number of removals after some time. 

 

 

3.4Count the number of the infected 

When calculating the contact rate for one 

individual, we should be aware of the 

number of the infected ,which is set as 

count_inf, then the contact rate is to be λ* 

count_inf. 

 

 

3.5 The interrelationship function 

for SI model 
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Main point: If the number generated 

randomly is less than the corresponding 

contact rate, the susceptible get infected, 

otherwise not. 

 

3.6 The interrelationship function 

for SIR model 

Main point: For susceptibles, if the number 

generated randomly is less than the 

corresponding contact rate, the susceptible get 

infected, otherwise not; For infected, if the 

number generated randomly is less than the 

cure rate, the infected recovers and will never 

get infected again, otherwise not. 

 

3.7 The interrelationship function 

for SIS model 

 

 

 

Main point: For susceptibles and 

removals, if the number generated 

randomly is less than the corresponding 

contact rate, the susceptible get infected, 

otherwise not; For the infected, if the 

number generated randomly is less than the 

cure rate, the infected recovers, otherwise 
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not. 

 

3.8 The interrelationship function 

for SHM model 

 

3.8.1 Touch Function 

 

Main point: as we can see, the contact 

rate is different for susceptibles and the 

removals, if written in this way, the 

interrelationship function will be more 

concise and clear. 

 

3.8.2 Cure Function 

 

Main point:it is just for convenience. 

 

3.8.3 The interrelationship function 

for SHM model 

The function is a little long, you can read 

it in the appendix. 

Main point: 

In a two dimensional grid, considering 

each individual as a point, for the origin 

point, the point whose both the row and 

column coordinate are larger than or equal 

to the origin point’s is called the field point, 

we should consider the interrelationship 

between the two point. 

 

 

Figure 1: the interrelationship between 

the origin and field point. 

 

 As we can see in the figure 1,the 

interrelationships between the two points 

are not 9 but 4.The red lines represents the 

impacts which the origin point plays on the 

field point, causing it infected with 

probability. Once the field point is infected 

by one origin point, it is infected in the 

observation of next time in spite of the 

impacts of other origin points, but remains 

uninfected this time. The green lines 

represents the impacts which the field point 

plays on the point point, causing it infected 

with probability. As for the calculation of 

the interrelationship, it is similar to other 

models, the main difference is that the 

contact rate is a variable, as shown in the 
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Touch Function in 3.8.1. 

 

4. Results and Analysis 

  4.1 SI model 

 

Figure 2: The simulating image and 

theoretical image of the relationship 

between the number of the infected and time 

under different environment in SI model. 

 

From Figure 2, we can conclude as 

followed: 

1) As mentioned in 2.1.2, in SI model, we 

can get an analytic solutions directly, and 

from Figure 2, we can see that under 

different environment, the simulating 

lines almost coincide with the 

corresponding theoretic line, which 

implies the way we simulate the model is 

right. 

2) With the contact rate increasing, the 

number of the infected gets to the 

maximum faster. 

3) The initial number of the infected is 1 or 

2 has little impact on the results. 

 

 

Figure 3: The relationship between the 

number of the infected and time under 

different environment and initial conditions 

in SI model. 

  

Based on Figure 2, and from Figure 3, we 

can see that the initial number of the 

infected is 1 or 2 does have little impact on 

the results. 

 

 

Figure 4: The relationship between the 

derivative of the number of the infected and 

itself in SI model.  

  

  As we can see from Figure 4, with 

the increase of the number of the 

infected, the derivative of it shows a 

trend of increasing first and then 

decreasing. We can make a Gaussian 

fitting, as shown in Figure 5. 
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Figure 5: The Gaussian fitting of curves 

in Figure 4. 

 

After fitting, we can intuitively see 

that under different conditions, the 

value of dI(t)/dt gets to its maximum 

almost at the same value of I(t), when 

the number of the increasing patients 

grows fastest. According to the data, 

relevant departments can predict the 

climax of infectious diseases and make 

sufficient preparations.  

   

4.2 SIR model 

 
Figure 6: The relationship between the 

number of the infected and time under 

different conditions whenσis more than 1 

in SIR model. 

 

Figure 7: The relationship between the 

number of the infected and the susceptible 

under different conditions whenσis more 

than 1 in SIR model. 

 

From Figure 6 and 7,we can conclude 

as followed: 

1) With time passing by,the number of the 

infected shows a trend of increasing to 

the maximum first and then decreasing 

to zero whenσis more than 1. 

2) With the decrease of the contact rate, 

the value of the maximum of I(t) is 

getting smaller, which means that 

isolating the patients does good to 

controlling the spread of the disease. 

3) With the increase of the number of the 

susceptibles, the number of the 

infected shows a trend of increasing 

first and then decreasing when σ is 

more than 1. What matters most is that 

the four lines have a common tangent 

when the number of the infected 

converges to zero, which is shown in 

yellow line in the figure. 

    In other words, this kind of infectious 

disease won’t spread in the crowd and will 

be cured finally.  
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Figure 8: The image of the number of the 

infected, the susceptibles and the removals 

with time changing under different 

conditions in SIR model. 

 

Obviously, whenσ>1, isolating the 

patients does good to controlling  the 

spread of the disease. 

 

 

Figure 9: The relationship between the 

number of the infected and time under 

different conditions whenσis less than or 

equal to 1 in SIR model. 

 

 

Figure 10: The relationship between the 

number of the infected and the susceptible 

under different conditions whenσ is less 

than or equal to 1 in SIR model. 

 

Compared to Figure 6 and 7,we can 

obviously get from Figure 8 and 9, the 

number of the infected converges to zero at 

fast speed whenσis less than or equal to 1, 

which means the infection rate of the 

disease is very small and isolation is of no 

necessity. 

 

4.3 SIS model 

 

Figure 11: The relationship between the 

number of the infected and time under 

different conditions where the cure rate 

remains invariant and whenσis more than 1 

in SIS model. 
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As we can see from Figure 11, the 

number of the infected increases rapidly 

with time and then keeps invariant, the 

value of which increases with the contact 

rate increasing. 

 

 

Figure 12: The compasion of the number 

of the infected when the contact rate is 

different for the removals and susceptibles 

under different conditions in SIS model. 

 

Obviously from Figure 12, if the contact 

rate of the removals is half of that of the 

susceptibles, although the trend of the 

number of the infected is the same, but the 

value of the maximum is much less than that 

of the susceptibles. 

 

 

Figure 13: The relationship between the 

number of the infected and time under 

different conditions where the cure rate 

remains invariant and whenσis less than or 

equal to 1 in SIS model. 

 

4.4 SHM model 

 

 

Figure 14: The relationship between the 

number of the infected and time under 

different conditions when the cure rate=1 in 

SHM model. 

 

 

Figure 15: The relationship between the 

number of the infected and time under 

different conditions when the cure rate=0.5 

in SHM model. 
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From Figure 14 and 15, we can conclude 

as followed: 

1) When the cure rate=1, the infection 

rate is more than 0.1, the number of 

the infected is increasing rapidly at 

first and then come to the platform, 

the value of which increases with the 

infection rate increasing. 

2) When the cure rate=0.5, the 

infection rate is more than 0.1, the 

number of the infected is increasing 

rapidly at first and then come to the 

platform, the value of which 

increases with the infection rate 

increasing as well. But when the 

infection rate is 0.05, the number of 

the infected converges to zero 

rapidly, which means isolation is of 

significant importance. 

 

Let us have a look at the spread of 

SHM model under the condition: 

λ=0.1μ=1 

(yellow represents infected, green means 

uninfected) 

 

Figure 16: the simulation of day 2. 

 

Figure 17: the simulation of day 10. 

 

 

Figure 18: the simulation of day 20. 

 

As we can see from three figures above, 

we can notice that once one person is 

infected by some factors and no preventive 

or quarantine measures are taken, it is very 

easy for individuals near the patient to get 

infected in SHM model, because everyone 

in this model is coupled so strongly that 

spread of the disease seems much easier. 

 

5. Conclusion 

We have used four models, which have 

both common and different points, to 

simulate the spread of the infectious 

diseases and analyze the results in details. 
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Here we make a brief conclusion based on 

the results above. 

For the disease which cannot be cured 

completely or almost impossibly cured, 

once one person is checked to have infected, 

the one is ought to volunteer to isolate 

himself in case of infecting others, or 

everyone will get infected at last. 

Meanwhile, improving the health care 

facilities or reducing the contact rate, can 

delay the arrival of the peak of infectious 

diseases. 

For the disease which can be cured with 

immunity, the number of the infected will 

converge to zero finally without any 

measures, so don’t worry although getting 

far away from the infected is better to avoid 

getting infected. Improving the health level 

is a pretty way to control the spread of 

infectious diseases. 

For the disease which can be cured 

without immunity, if the cure rate is bigger 

than the contact rate, the number of the 

infected will converge to zero rapidly. 

However, if the contact rate is bigger than 

the cure rate, the number of the infected will 

remain at certain value, while improving the 

level of medical and care, diminishing the 

contact rate is the best way to avoid diseases, 

namely getting far away from the patient. 

Thanks to the flexibility of the models, 

they can be applied to predict the future 

trend of infectious diseases, simulate the 

interaction between the drug and body or 

some sociological problems such as the 

spread of rumors and so on. 
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Appendix  

The interrelationship function for SHM 

model in 3.8.3: 

void InterrelationShipSHM(SSR shm[][L]) 

{ 

 SSR newshm[L][L]; 

 //copy ssr first 

 for(int i=0;i<L;i++)   

 { 

  for(int j=0;j<L;j++) 

  { 

   newshm[i][j]=shm[i][j]; 

  } 

 }  

 //change later 

 for(int i=0;i<L;i++) 

 { 

  for(int j=0;j<L;j++) 

  { 

   for(int p=i;p<L;p++) 

   { 

    for(int q=j;q<L;q++) 

    { 

//regard shm[i][j] and shm[p][q] as the 

origin point and the field point in 

electromagenetic field respectively 

       if(p==i&&q==j); 

     else if(shm[i][j].inf==1) 
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//i.e:the origin point may change the field point 

{ 

CureSSR(&newshm[i][j]); 

//the origin point may be cured 

if(newshm[p][q].inf==0) 

//the field point is not infected yet. 

  { 

TouchSSR(&newshm[p][q],p,q,i,j,sh 

m[p][q].sup); 

//the field point may change     

  }      

 }  

 else if(shm[p][q].inf==1) 

//i.e:the field point may change the origin point 

 {        

 TouchSSR(&newshm[i][j],p,q,i,j,shm

[i][j].sup); 

//the field point may changes 

 }   

if(i==L&&j==L&&shm[i][j].inf==1) 

 {     

 CureSSR(&newshm[i][j]); 

 } 

//other occasions: neither the origin point nor the 

field point is infected 

    } 

   }    

  } 

 } 

//final paste  

 for(int i=0;i<L;i++)   

 { 

  for(int j=0;j<L;j++) 

  { 

   shm[i][j]=newshm[i][j]; 

  } 

 } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


