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Abstract 

Solitary waves are used widely in scientific and practical applications due to their distinctive 

physical properties. Many researchers have been trying to find analytic descriptions of solitary 

waves to further study their characteristics. In this report, we use numerical methods to 

investigate the soliton solutions of 1D KdV equation and 2D sine-Gordon equation, and then 

describe the behaviors of solitary waves revealed by those solutions, including the formation, 

propagation, collision, superposition and evolution of solitary waves. 
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1. Introduction 

 

 The concept of a solitary wave was first 

introduced by J. Scott Russell when he 

observed unusual water waves in 1834. He 

described this phenomenon in his report: 

 I was observing the motion of a boat 

which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat 

suddenly stopped—not so the mass of water 

in the channel which it had put in motion; it 

accumulated round the prow of the vessel in a 

state of violent agitation, then suddenly 

leaving it behind, rolled forward with great 

velocity, assuming the form of a large solitary 

elevation, a rounded, smooth and 

well-defined heap of water, which continued 

its course along the channel apparently 

without change of form or diminution of 

speed. I followed it on horseback, and 

overtook it still rolling on at a rate of some 

eight or nine miles an hour, preserving its 

original figure some thirty feet long and a foot 

to a foot and a half in height. Its height 

gradually diminished, and after a chase of one 

or two miles I lost it in the windings of the 

channel. Such, in the month of August 1834, 

was my first chance interview with that 

singular and beautiful phenomenon… 

Since then, efforts have been paid to find 

equations that describe this unique 

phenomenon. It was not until Korteweg and 

de Vries provided an analytic description of 

solitary waves (Korteweg-de Vries Equation or 

KdV equation) in 1895 that solitary waves 

were widely accepted by academic 

communities and experienced a short time of 

prosperity. After about 60 years of little 

progress on research on solitary waves, in 

1955, Enrico Fermi, John Pasta and Stan Ulam 

published a paper entitled Studies of 

Nonlinear Problems arousing researchers’ 

interests in solitary waves again. In the paper, 

they introduced the concept of “soliton” to 

describe solitary waves that behave like 

particles. However, those two concepts have 

almost no difference today.  

 Nowadays, solitary waves have been 

playing increasingly significant roles in both 

scientific research and practical applications. 

Their distinctive properties still fascinate 

many researchers, and more of their 



applications are waiting to be discovered. 

 In this report, we are interested in two 

equations (KdV equation and sine-Gordon 

equation) that have soliton solutions. We 

solve these equations for their soliton 

solutions and discuss what properties of 

solitons these solutions can tell us. 

 

2. Methods 

 

2.1 1D KdV Equation:  
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Equation (1) above can be solved 

numerically by finite-difference method. 

The time and space derivatives are 

given by the central-difference 

approximations: 
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The term 
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can be 

approximated by Taylor expansion: 
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(3) 

We can take the average of three x 

values with the same t for u(x,t): 
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After substituting these 

approximations above, we can get the 

algorithm for KdV equation: 
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(5). 

u(x,0) can be obtained by initial 

conditions, and we can apply 

forward-difference scheme to get u(x,1): 
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(6). 

For those undefined points, we 

assume that 

0,1 1u  , 
0,2 1u  , 

max 1,1 0Nu   , 
max 1,2 0Nu    (7). 

 

2.2 2D Sine-Gordon Equation (SGE):  
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 (8) 

Equation (8) can be solved by 

finite-difference method like what we 

have discussed in KdV equation. 

The algorithm for SGE is: 
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(9). 

We can take / 2t x    to make 

the algorithm simpler and stable. By 

using this trick, u(x,y,1) can be obtained 

in a simpler form: 
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(10) 

We take the initial condition and 

boundary conditions as follows: 
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2.3 Algorithm 

i. Define a 2D array u(x,t) for KdV 

equation or a 3D array u(x,y,t) for SGE. 

ii. Initialize u(x,t=0) or u(x,y,t=0) with 

initial conditions. 

iii. Use the formula (6) for KdV or (10) 

for SGE and apply boundary conditions 

(7) for KdV or (12) for SGE to get u(x,t=1) 

or u(x,y,t=1). 

iv. Use the formula (5) for KdV or (9) 

for SGE to get the third time step u(x,t=2) 

or u(x,y,t=2). 

v. For the sake of saving computers’ 

memory, at the end of every iteration, 

we make u(x,t=0) = u(x,t=1) and u(x,t=1) 

= u(x,t=2), or u(x,y,t=0) = u(x,y,t=1) and 

u(x,y,t=1) =  u(x,y,t=2). 

vi. Repeat step (iv) and (v) to 

continue the propagation. 

(A C++ program for solving KdV 

equation and SGE is provided in 

attachment.) 

 

3. Results and Discussions 

 

3.1 1D Solitons 

3.1.1 Solitons in the propagation of a 

two-level waveform 

The initial conditions is: 
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Fig. 1. One two-level waveform breaks up into 

seven solitons (label 1-7). 

Figure 1 shows that a single 

two-level waveform breaks up into seven 

solitons as time increases. This figure is a 

simulation of tsunamis: when a sudden 

change exists in the level of an ocean 

floor and propagates over a long 

distance with no attenuation and 

dispersion, tsunamis tend to form. 

We calculate velocities of the 

solitons with three different amplitudes 

(A>B>C ) by tracing their positions as 

time increases and linearly fit those 

points (see Fig. 2). Table 1 shows the 

results of fitting: 

 

Fig. 2. Different velocities of solitons with 

different amplitudes. 

Soliton R-Square Slope 

A 0.9967 7.357 

B 0.9989 6.607 

C 0.9966 6.000 
Table 1. Linear fit of different solitons’ x-t curve. 

   

Since the R-squares are very close 

to 1, which means straight lines fit the 

data well, the slopes can represent 

solitons’ velocities (dx/dt). We can draw 

a conclusion from figure 2 and table 1 

that a soliton with larger amplitude 

travels faster than a smaller one, and 

moreover, the velocities of every soliton 

is invariant during propagation. Errors 

here may be caused by parameter 



selections and data processing. 

 

  3.1.2 Collision of two solitons 

The initial condition is: 
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Fig. 3. Collision of two solitons 

 

  Figure 3 shows that two solitons 

(label 1 and 2) collide with each other 

during propagation due to the difference 

in velocities between the taller (faster) 

soliton (label 1) and the shorter (slower) 

soliton (label 2). We also find that after 

colliding, these two solitons retain their 

initial velocities and waveforms. 

Moreover, since the amplitudes of the 

two solitons are both positive, if the 

superposition of them is linear, the 

amplitudes should be larger than that of 

either of the two solitons when they are 

superposed. However, we can see from 

figure 3 that this is not the case, and thus, 

the superposition of the two solitons is 

nonlinear. 

 

3.2 2D Solitons (quasi-solitons) 

We use OriginPro to show the 

intuitive appearance of the soliton at 

different times by wire frame and draw 

the contours with amplitudes for 

observing the behaviors of solitons more 

directly. 

 

3.2.1 Circular ring solitons 

Figure 4.1 to 4.5 show the evolution 

of a circular ring soliton. The initial 

condition is: 
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(a) 

 

(b) 

Fig. 4.1. Circular ring solitons at t=0. 
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(b) 

Fig. 4.2. Circular ring solitons at t=2.8. 
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(b) 

Fig. 4.3. Circular ring solitons at t=5.0. 
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(b) 

Fig. 4.4. Circular ring solitons at t=15.0. 
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(b) 

Fig. 4.5. Circular ring solitons at t=29.8. 

 

Figure 5.1 to 5.4 show the evolution 

of an elliptical ring soliton (an animation is 

also provided in attachment). The initial 

condition is: 
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Fig. 5.1. Elliptical ring solitons at t=0. 

 

 

(a) 

 

(b) 

Fig. 5.2. Elliptical ring solitons at t=2.5. 
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(b) 

Fig. 5.3. Elliptical ring solitons at t=10. 

 

 

(a) 

 

(b) 

Fig. 5.4. Elliptical ring solitons at t=39.7. 

 

We can see from figures above, both 

circular ring soliton and elliptical ring 

soliton experience shrink (e.g. Figure 4.2 

and Figure 5.2) and expansion (e.g. Figure 

4.3 and Figure 5.3) and the symmetry of 

initial conditions are to some extent 

retained even after evolving for a long 

time (e.g. Figure 4.5 and Figure 5.4). 

 

4. Conclusion 

We have discussed some of the 

behaviors of solitons represented by soliton 

solutions of KdV equation and SGE in detail. 

From the discussions above, we can draw the 

following conclusions: 

i. Solitary waves can be generated from a 

two-level waveform (e.g. a sudden change in 

the level of an ocean floor in reality); 

ii. Solitons with larger amplitudes travel 

faster than those with smaller amplitudes, 

and the velocities of solitons are constant 

during propagation. 

iii. After collision, solitons retain their 

initial waveforms and velocities. 

iv. Superposition of solitons is not linear 

due to their nonlinear properties. 

v. Both circular and elliptical ring solitons 

(quasi-solitons) would experience shrink and 

expansion, and their symmetries are to some 

extent retained during evolution. 
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