
astrodynamicss: Let’s go to moon
Author: 申汀

Data：2016.1.6

Abstract:

In this paper, I did some astrodynamicss calculations to let a

craft to be able to go to moon. The main work is how to find a route.

For simplicity, I have to make some approximations and I suppose

all this happened in the future. Finally, I make it and account for the

time I spend. But this plan is not perfect, so many improvements

are needed. After all, it’s my first step trying to go into the space.

Keywords:

astrodynamics, route prediction, earth to moon, space traveling

Main Body:

Since 19th century, the population on earth is gradually getting

crowded, which means we will use up some kinds of resources. So

our prospect is no doubtfully space. But until now, we have still just

been moon, and I have to say the procedure is really slow. Searching

and studying space is the inclination of the future, and it’s my habit

coincidentally. So I choose this topic: astrodynamicss.

I was inspired when I saw the movie Bring Me Home some days

ago. In the movie there was an Indian who did the astrodynamicss

for NASA and successfully saved an astronaut. He calculated and



changed the route of the craft. So I think I could do the same thing.

But I need to start from the very beginning: how to go to moon.

At first I thought it might be not very difficult, but eventually I found

I was totally wrong. Even though I make many approximations, it’s

still not easy. And I’m very satisfied after I finished it.

1.How to choose a route

The first thing I need to consider is how to choose a route. This

problem has already been solved by scientists so I want to find

some hint. I’ve seen some pictures on television of Chang’E1, which

showed the route of it. It was a curve. But I wonder why it was in

this way? Why wasn’t it just go to the moon? I suddenly realized it

was because the inertia and for saving energy. If we want to travel

in space, energy is unique, so saving energy is so crucial that we

must consider about it.

Maybe the best choice is to rotating around earth first and

then accelerate at same point for several times to go through the

critical point. By this way could we do the least work. So I choose it.

But meanwhile, I need to consider the rotation of moon. I need to

know how many days it will take to go to the critical point so that I

won’t miss moon.

After arriving the critical point, then I need to change my

velocity again cause moon is rotating but the craft is now relatively



“static” over earth. I made it has an additional tangential velocity

according to its distance to earth and the angular velocity of moon

in honor of the line which links earth and moon.

Getting Approached to moon, I make it orbit around moon. So

now we could go to any place on it.

Fortunately, I finally verified this hypothesis.

2.Backgrounds: settings and approximations

Before I started, I made some settings of the situation. I

assumed this journey happened in the future when we don’t need

rockets but just crafts and the crafts wouldn’t need fuel but instead

the nuclear power, which made its mass won’t change in the space.

This is vital because if I need to calculate the change of mass, this

problem would be more too difficult. But it’s also reasonable, since

human have already used the nuclear power to get electricity and

we could image it will be utilized in other ways before too long. So I

set the engine power P.

Even though I had to make many approximations. I assumed

the time of acceleration was infinitesimal over the time the journey

takes. I assumed the orbit of moon is a circle (but we all now it’s

obviously not) and I choose the average radius of the orbit.



3.Search for some data1

For calculation, I need some data:

The masses and radiuses of earth and moon.

The periodic time of moon.

The radius of moon’s orbit.

The thickness of air on earth. (for orbiting)

4.Numerical calculation

The main algorithm I used is Runge-Kutta method. I use this

method to predict the route of the craft. I know its initial speed,

location and also those of moon’s. This procedure is not very

difficult but complex and need some patience.

Besides, I calculated the rough distance of critical point, where

the gravitation of earth and moon is equilibrium. To go to moon, we

should at least arrive at this point.

And at the end of the codes, I calculated the actual time this

traveling totally costs.

1 From internet.



5.Final graphs

These are the graphs. The curve on them is the route of the

craft, whereas the arc is that of moon’s.

Congratulations! We approach moon.



6.Problems

1、In the end, we could see the period of changing velocity

costs about 2 days. Actually it’s not able to ignore it. Without

considering about it, we may draw the wrong conclusion. If this

happened in the reality, many people may die.

2、We make too many approximations, for simplicity, of

course. But approximations will never occur in the real world. To

improve it, we need to know the accurate route of moon and more

other information.

3、The order of magnitude of power I set is meaningless,

because if the engine supplied this power, the acceleration it caused

would kill any human, even the strongest one on the planet. But

even though, we still spend more than 2 days to change the speed.

So we could image, in the future we need to find some solutions to

deal with the problem of costing too much time to accelerate. It

may be the theorem of relativity?

4、I have to admit I may not choose the most efficient route.

In the graphs we could see the route is not very smooth. It’s

apparently not the best. It’s still needed to be altered.

7.Codes
#include<iostream.h>

#include<math.h>

#include<fstream.h>



#define Pi 3.1415926

const double Me=5.965*1e24,Re=3.189*1e6; //the mass and radius of earth

const double Mm=7.349*1e22,Rm=1.738*1e6; //the mass and radius of moon

const double mm=1.5*1e4; //the mass of the craft

const double Dem=3.8*1e8; //the distance between earth and moon

const double WW=1.0*Pi/(27*24+7)/30.0; //the angular velocity of moon over earth per minute

const double Orbit_e=Re+2.0*1e5; //the orbital radius on earth

const double Orbit_m=Rm+5.0*1e3; //the orbital radius on moon

const double G=6.67*1e-11; //the Gravitational constant

const double P=2.0*1e13*1e4; //set the power the engine supplies

const double t=4.0; //Assume how many days it will take to go to the critical point

double Critical(void) //Calculate the critical distence between the craft and earth

{

const double d1=(Me-sqrt(Me*Mm))/(Me-Mm);

return Dem*d1;

}

double VelocityNeeded(double rr) //Calculate the minimum velocity needed to be enough to

go through the critical point

{

const double W1=G*Me*mm*(1.0/Orbit_e-1.0/rr); //the potential of earth that craft needs to overcome

const double W2=G*Mm*mm*(1.0/(Dem-rr)-1.0/(Dem+Orbit_e)); //the potential given by moon

//According to the Kepler's law we have r1v1=r2v2

//and relate it with 1/2*mm*v1^2+W1-W2=1/2*mm*v0^2

double v0=sqrt((W1-W2)*2.0*rr*rr/((rr*rr-Orbit_e*Orbit_e)*mm)); //we get this formula

v0+=6.75; //since it's critical, in case it fails to approach the point, I need to add a little extra speed

return v0;

}

double Rungekutta_PredictOrbit(double v, double O, double t, double *xc, double *yc, double *vx, double *vy)

//simulate the origin position of moon and craft and their velocity

//to predict their orbits

{

const double dt=0.1;

const double dt2=dt*dt/2;

const double dt3=dt*dt2/3;

const double dt4=dt3*dt/4;

double X_c=-1.0*Orbit_e,Y_c=0.0; //set the initial position of craft

double V_x=0.0,V_y=-1.0*v; //set the initial velocity of craft

const double Rc=Critical();



ofstream out("Predict_Orbit.txt");

out<<0.0<<'\t'<<0.0<<endl;

for(int i=0;i<t*(3600*24.0/dt);i++)

{

if(i%(int)(60.0/dt)==0){

O+=WW;

const double X_m=Dem*cos(O),Y_m=Dem*sin(O);

out<<i*dt/3600.0<<'\t'<<X_m<<'\t'<<Y_m<<endl;

}

const double X_m=Dem*cos(O),Y_m=Dem*sin(O); //set the position of moon

const double R1=sqrt(X_c*X_c+Y_c*Y_c); //Calculate the distance between earth and craft

const double R2=sqrt((X_m-X_c)*(X_m-X_c)+(Y_m-Y_c)*(Y_m-Y_c));

//the distance between moon and craft

const double A1=G*Me/R1/R1,A2=G*Mm/R2/R2; //Calculate the acceleration

const double A_x=-1.0*A1*X_c/R1+A2*(X_m-X_c)/R2;

const double A_y=-1.0*A1*Y_c/R1+A2*(Y_m-Y_c)/R2;

const double xd1=V_x; const double yd1=V_y;

const double Vxd1=A_x; const double Vyd1=A_y;

const double xd2=Vxd1; const double yd2=Vyd1;

const double Vxd2=-1.0*V_x*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double Vyd2=-1.0*V_y*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double xd3=Vxd2; const double yd3=Vyd2;

const double Vxd3=-1.0*A_x*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double Vyd3=-1.0*A_y*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double xd4=Vxd3; const double yd4=Vyd3;

const double Vxd4=-1.0*Vxd2*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double Vyd4=-1.0*Vyd2*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

X_c+=xd1*dt+xd2*dt2+xd3*dt3+xd4*dt4; Y_c+=yd1*dt+yd2*dt2+yd3*dt3+yd4*dt4;

V_x+=Vxd1*dt+Vxd2*dt2+Vxd3*dt3+Vxd4*dt4; V_y+=Vyd1*dt+Vyd2*dt2+Vyd3*dt3+Vyd4*dt4;

out<<i*dt/3600.0<<'\t'<<X_c<<'\t'<<Y_c<<endl;

//<<'\t'<<V_x<<'\t'<<V_y<<'\t'<<A_x<<'\t'<<A_y<<endl;

if(Rc-R1<1000){ //check if it's approaching the critical point

if(fabs(A_x)<0.001){ //check if the acceleration in x-axis is near zero

*xc=X_c,*yc=Y_c;

*vx=V_x,*vy=V_y;

cout<<"==========================="<<endl

<<"approach the critical point"<<endl



<<"==========================="<<endl;

break;

}

}

}

out.close();

return O;

}

double Rungekutta_PredictOrbit2(double V_x, double V_y, double X_c, double Y_c, double O, double *V2)

{

const double dt=0.1;

const double dt2=dt*dt/2;

const double dt3=dt*dt2/3;

const double dt4=dt3*dt/4;

double tt=0.0; //accout the total time we spend in this part

ofstream out("Predict_Orbit.txt",ios::ate);

for(int i=0;i<t*1500*24.0/dt;i++)

{

if(i%(int)(60.0/dt)==0){

O+=WW;

const double X_m=Dem*cos(O),Y_m=Dem*sin(O);

out<<i*dt/3600.0<<'\t'<<X_m<<'\t'<<Y_m<<endl;

}

const double X_m=Dem*cos(O),Y_m=Dem*sin(O); //set the position of moon

const double R1=sqrt(X_c*X_c+Y_c*Y_c); //Calculate the distance between earth and craft

const double R2=sqrt((X_m-X_c)*(X_m-X_c)+(Y_m-Y_c)*(Y_m-Y_c));

//the distance between moon and craft

const double A1=G*Me/R1/R1,A2=G*Mm/R2/R2; //Calculate the acceleration

const double A_x=-1.0*A1*X_c/R1+A2*(X_m-X_c)/R2;

const double A_y=-1.0*A1*Y_c/R1+A2*(Y_m-Y_c)/R2;

const double xd1=V_x; const double yd1=V_y;

const double Vxd1=A_x; const double Vyd1=A_y;

const double xd2=Vxd1; const double yd2=Vyd1;

const double Vxd2=-1.0*V_x*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double Vyd2=-1.0*V_y*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double xd3=Vxd2; const double yd3=Vyd2;

const double Vxd3=-1.0*A_x*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double Vyd3=-1.0*A_y*G*(Mm/R2/R2/R2+Me/R1/R1/R1);



const double xd4=Vxd3; const double yd4=Vyd3;

const double Vxd4=-1.0*Vxd2*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

const double Vyd4=-1.0*Vyd2*G*(Mm/R2/R2/R2+Me/R1/R1/R1);

X_c+=xd1*dt+xd2*dt2+xd3*dt3+xd4*dt4; Y_c+=yd1*dt+yd2*dt2+yd3*dt3+yd4*dt4;

V_x+=Vxd1*dt+Vxd2*dt2+Vxd3*dt3+Vxd4*dt4; V_y+=Vyd1*dt+Vyd2*dt2+Vyd3*dt3+Vyd4*dt4;

out<<i*dt/3600.0<<'\t'<<X_c<<'\t'<<Y_c<<endl;

//<<'\t'<<V_x<<'\t'<<V_y<<'\t'<<A_x<<'\t'<<A_y<<endl;

if(fabs(R2-Orbit_m)<100){ //check if we have approached moon

*V2=V_x*V_x+V_y*V_y;

cout<<"==========================================="<<endl

<<"Congratulations! We have arrived the moon! "<<endl

<<"==========================================="<<endl;

tt=1.0*i*dt/3600.0/24.0;

break;

}

}

out.close();

return tt;

}

void main(void)

{

const double V1_e=sqrt(G*Me/Orbit_e); //the first universal velocity of earth

const double V1_m=WW/60.0*Dem-sqrt(G*Mm/Orbit_m); //the first universal velocity of moon over earth

const double rr=Critical(); //the criticle point I choose

double v1=VelocityNeeded(rr); //necessary velocity to go through critical point

cout<<"the necessary velocity is "<<v1<<endl;

double oo=-24.0*60*t*WW; //the corresponding angle of moon

cout<<"the initial angle of moon is "<<oo/Pi<<"*Pi"<<endl;

ofstream outfile("OriginPosition.txt");

const double Xm=Dem*cos(oo),Ym=Dem*sin(oo);

outfile<<0<<'\t'<<0<<'\n'<<Xm<<'\t'<<Ym<<'\n'; //output the position of earth and moon

outfile.close();

double X_c=0.0,Y_c=0.0,V_x=0.0,V_y=0.0;



oo=Rungekutta_PredictOrbit(v1,oo,t,&X_c,&Y_c,&V_x,&V_y);

const double X_m=Dem*cos(oo),Y_m=Dem*sin(oo);

cout<<"the positions of craft and moon are "<<endl

<<"("<<X_c<<","<<Y_c<<") ("<<X_m<<","<<Y_m<<")"<<endl;

const double r1=sqrt(X_c*X_c+Y_c*Y_c),

r2=sqrt((X_m-X_c)*(X_m-X_c)+(Y_m-Y_c)*(Y_m-Y_c));

double v2=sqrt(V_x*V_x+V_y*V_y);

V_y+=WW/60.0*r1; //some amendment caused by the rotation of moon

double V2_x=V_x,V2_y=V_y; //Now we need to change the velocity of the craft

//but omit the time this procedure takes

const double V2=sqrt(V2_x*V2_x+V2_y*V2_y);

cout<<"the necessary velocity 2 is "<<V2<<'\t'<<"("<<V2_x<<","<<V2_y<<")"<<endl;

double V3=0.0;

double t2=Rungekutta_PredictOrbit2(V2_x,V2_y,X_c,Y_c,oo,&V3);//predict the orbit and meanwhile reserve

//the time it takes and the final V3

if(t2==0)cout<<"sorry we failed"<<endl;

else{

const double vv=VelocityNeeded(rr);

const double W1=1.0/2*mm*(vv*vv-V1_e*V1_e);

const double W2=1.0/2*mm*(V2*V2-v2*v2);

const double W3=1.0/2*mm*(V3*V3-V1_m*V1_m);

const double W=W1+W2+W3;

const double t3=W/P;

double T=t+t2+t3;

cout<<"we spent "<<T<<" days and now we are at moon!"<<endl

<<t<<'\t'<<t2<<'\t'<<t3<<endl;

}

}

Acknowledgment

Thanks for professor Dong’s teaching. In this semester, I really

learned something useful and I will keep studying to solve problems

by computers!

Thank you!


