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Abstract 
In the passage, we describe in detail two efficient algorithms for studying site percolation on any lattice. 
The algorithm can measure an observable quantity in a percolation system for all values of the site 
occupation probability from zero to one in an amount of time that scales linearly with the size of the 
system. This passage investigates a number of issues in percolation theory, including the position of the 
percolation transition for site percolation on the square lattice, the size of the giant component for site 
percolation on random graphs as well as the exponential behavior near critical point. Lastly, we use an 
example to demonstrate the value of percolation in varying fields. 

 
 
1 Introduction 

 
Percolation Theory[1] was first proposed by 

Broadbent and Hammersley during their research 
on the flow of fluids through porous media. 
Noticeably, there are numerous natural phenom- 
ena concerning percolation process, e.g. the flow 
of oil through porous rock, spread of forest fire, 
propagation of epidemic diseases, etc. Common 
features of these phenomena reside in the fact 
that there are two distinctive macro-states in the 
system: impermeable vs. permeable or noncond- 
uctive vs. conductive. Moreover, the transition 
between varying macro-states depends on either 
occupation probability or particle concentration. 

In the view of mathematics and physics, perc- 
olation generally refers to simplified lattice 
models of random systems shown in Fig.1, along 
with the nature of connectivity in them. There 
are three kinds of percolation models: site perco- 
lation, bond percolation as well as site-bond 

percolation. In the paper, we only talk about the 
site percolation.  

In site percolation, every site on a specified 
lattice is independently either ‘‘occupied,’’ with 
probability p, or not with probability 1-p. The 
occupied sites form contiguous clusters that have 
some interesting properties. In particular, system 
shows a continuous phase transition at a finite 
value of p which, on a regular lattice, is 
characterized by the formation of a cluster large 
enough to span the entire system from one side 
to the other in the limit of infinite system size.  

Fig.1: 2D site percolation model with occupation 

probability p=0.2, 0.59 ,0.8 respectively 
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Percolation threshold is a critical value of the 
occupation probability pc. Regard the cluster 
large enough to span the entire system from one 
side to the other as an open cluster. Below the 
threshold, open cluster would not exist; while 
above it, there might exist. The existence of 
open cluster will change the properties of the 
system, as mentioned before: impermeable vs. 
permeable or nonconductive vs. conductive etc. 

Despite decades of effort, no exact solution of 
the site percolation problem yet exists in the 
simplest two-dimensional square lattice, so 
numerical simulations have found wide use in 
this field. 

 In the paper, we investigate a number of issues 
in percolation theory based on Monte Carlo 
method, including the position of the percolation 
transition for site percolation on the square 
lattice, and the size of the giant component for 
site percolation on random graphs and we also 
mention the exponential behavior near critical 
point. 
 
2 Model  

 
According to Kolmogorov’s zero-one law[2], 

we know that for an infinite system, given site 
occupied probability p, the probability of a open 
cluster q is either 1 or 0.  

                    (1) 

However, noticing that it is impossible to 
simulate an infinite system, so we would focus 
on discussing finite-size systems. In this case, 
the relation between p and q can still be 
approximately satisfied. Besides, q is a 
non-decreasing function of p, so there must be a 
threshold value pc.  

Firstly, consider a two-dimension N×N lattice, 
each element of the lattice stands for a site. We 
assume the bond between each element is 
connected. Fig2. shows that the sites colored 

black are blocked. While the others colored 
white or blue are open and they can connect with 
their neighboring sites and thus form a cluster. 
When the cluster reaches both ends of the lattice, 
we say the lattice percolates. 

Figure 2:Left: 2D percolation model which percolates; 

Right: 2D percolation model which not percolates 

 
3  Algorithm 
 

For finite-size N×N lattice, define p as the 
site-open probability (occupation probability)of 
each site and q as the percolation probability of 
lattice. We applied random experiments to 
varying size of N×N lattice. And for each scale, 
we use a set of occupation probabilities to test 
percolation probability. 
  We have to go through the following 
procedures in single experiment:  

a.   Use a N×N structure array to represent N
×N lattice. Then Initialize the array, “1” 
stands for a open site, while “0” stand for 
a blocked site.  

b. Search for a sequence of “1” which 
connects an open passage in the array. 
This open passage stands for the open 
cluster in lattice.  

 
3.1  Initialization 

Set a site-open probability p.  
Each element of the array is initialized with a 

random real number ranging from 0 through 1. If 
the random real number is greater than p, then 
this element stand for a open site and would be 
given the value “1”, otherwise the element is 
blocked with the value “0”. In Fig3. , you can 
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see  an  initialized  10×10 lattice. 

Figure 3： Initialization with site-open probability 

p=0.6, yellow site: open passage, grey site: blocked 

area 

 
3.2  Search for Percolation 

 There are two algorithms involved in this 
part: wave detection algorithm and 
Hoshen-Kopelman Algorithm[3]. Each algorithm 
has its merits and drawbacks, so here we use the 
two algorithms for different intention. 

 
a. Wave Detection Algorithm 

In this method, we use the idea of 
wave-front expansion. As shown in Fig4. , 
the number of each site stands for the order 
of wave.  

Figure 4: Wave Detection Algorithm 

 
To begin with, we detect all the open sites 

in the first row and regard them as the first 
wave with the value “0”. Then the second 
wave starts. It contains all the other open 
sites and they can be reached within a step 
from the first wave. The second wave is 

valued “1” . We should notice that the kth 

wave is also derived from (k-1)th wave. The 
kth wave will be valued “k”. Not only does 
the value stand for the order of the wave, 
but also it shows the length of an open 
passage starting from the first row.  

  The advantage of this method is that it 
can find the shortest passage leading to 
percolation. While the disadvantage resides 
in complexity of wave detection, each time 
we have to go through all the sites in the 
structure array to find the next wave front. 

 
b. Hoshen-Kopelman Algorithm 

This algorithm labels every open site in 
the structure array in the first palce with the 
value “1”.  

Then we start searching for cluster. 
When going through a brand-new open site, 
we check if there exist a neighboring open 
cluster. If there do exist, then the site would 
be labeled just as the open cluster. So all in 
all, in Fig5., every cluster shares the same 
label.  

 Figure 5: Hoshen-Kopelman Algorithm 

 
The strength of Hoshen – Kopelman 

Algorithm attributes to its success in 
calculating the site number of the biggest 
open cluster. We will use it to investigate 
the size of the giant component for site 
percolation on random graphs. 
 

4  Results and Analysis 
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   Our simulation involves site percolation  
on two dimension N × N square lattice with 
varying sizes ranging from N=4, 10, 20, 30, 50 
and 75.In Sec.4.1, we look into the relation 
between site-open probability and percolation 
probability. While in Sec.4.2, the size of the 
giant component for site percolation has been 
taken into consideration. In order to fit into 
practical application, the exponential behavior 
near critical point will be discussed in Sec.4.3.  
 
4.1 Percolation probability 

Fig.6 shows the relation between 
independently site-occupied probability and 
percolation probability for systems of a variety 
of sizes. 

Figure 6: the relation between site occupied probabil- 

ity and percolation probability when the scale of lat- 

tice is N=4, 10, 20, 50, respectively. 

 
From Fig.6, we can see the curves cross 

remarkably at the same point, in agreement with 
empirical value of percolation threshold 
pc-e=0.5927 (the subscript e stands for empirical 
value).By means of the software Origin, we can 
obtain percolation threshold in our simulation 
pc-s=0.59303 (the subscript s stands for simulati- 
on result).The error is pretty small, for the 
expected behavior is already well represented by 
the mean value, which is derived from the 
considerable amount of statistics we could reach 
in this simple case. 

Different from site percolation, the exact  

solution to the threshold of bond percolation is 
pc-t=0.5(the subscript t stands for theoretical  
value), smaller than that of site percolation. It is 
easy to illustrate this phenomenon by noting the 
different availability of neighboring element in 
each case. As for bond percolation, there are six 
element available for connecting, while in site 
percolation, there are only four. So it is nature 
that bond percolation is easier to happen, 
compared to site percolation. 
  Also, In Fig.6, we can see each curve has  
different rising tendency. In specific, the bigger 
the lattice size, the quicker the curves increase 
around critical point. In order to observe the 
tendency precisely, we applied the following 
formula to lattice of different sizes.  

                    (2) 

The result demonstrating the relation between 
system size and rate of the slope is shown in 
Fig7. It is a straight line with positive slope. In 
other word, the bigger size of lattice, the bigger 
rate of the slope. With this tendency, the rate of 
slope will be ∞ when N = ∞, which represent 
discontinuity in derivative equation of q (i.e. q 
will be a segmented function). So we can easily 
draw the Kolmogorov’s zero-one law in Eq.(1) . 

Figure 7: rate of the slope during the increasing 

section in Fig6. The slope have been taken from 

lattice scales ranges from N=4,10,20,50,75 
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4.2 size of cluster  
Through percolation theory, we define the 

average cluster size S and the size SM of the 
largest cluster of each configuration. In this 
section, we put emphasis on SM and the average 
cluster size S will be discussed later. 

 Fig.8. and Fig.9 show the relation between 
site-occupied probability and the size of the 
largest cluster. L is the total number of sites in 
the lattice. 

Figure8: the relation between site-occupied 

probability and SM in lattice N=10 and N=20 

Figure 9: the relation between site-occupied 

probability and SM/L in lattice N=10 and N=20 

  
   From Fig.8 and Fig.9, it is easy to find out 
that SM is comparable to the size of the system. 
In Fig.9, we can see turning points in both 
curves near percolation threshold. 
 
4.3 critical exponents 
  Lastly, we focus on discussing the critical 

exponent around threshold. Before showing the 
results, some important concepts must be 
introduced at first. 
1) S: the average cluster size  
2)  (percolation probability): with certain 

site-occupied probability p, the probability 
of occupying the cluster with the size of ∞ is 
called percolation probability . 

3) ξ (the average spanning length): for each 
configuration, ξ stands for the longest 
distance between two independent clusters 
on average. 

According to percolation theory, when |p-pc|≪1 

(i.e. near critical point ) in the infinite system, S, 

ξ , and   satisfy the following relations.   

           (3)                             

          (4)                         

             (5) 

And γ, β , ν  are positive exponents.While in 

finite-sized systems where ξ is comparable to the 

scale of the system N, we now have: 

                    (6) 

                   (7) 

                         (8) 
With these behaviors, we can put percolation 

theory into practical use since they relate the 
macroscopic properties of the compound system 
with their microscopic state (i.e. percolation 
threshold).  
 
4.3.1 Application  

One attractive feature of percolation theory is 
that many difficult and interesting phase transi- 
tion problems are simplified by it. Taken the 
charge-injection in insulating polymer[5] as an 
example. 

 By injecting certain amount of conductive 
particles into a insulating polymer, the polymer 
could become conductive due to percolation. σ 
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is defined as the conductivity of the polymeric 
matrix, while ε  represents dielectric constant. 
When the volume of injected particles ν exceeds 
the critical volume νc,, conductivity σ increases 
greatly as shown in Fig.10. 

 Figure 10: Percolation phenomenon of conductive 
particles filled polymer composites 

 

So despite the low concentration of 
conductive particles, polymer composites can be 
a good conductor once the volume of conductive 
particles exceeds critical volume. In contrast 
with Eq(3)(4)(5), the function for σ andεare 
given below:  

                (9) 

                (10) 
So Through percolation theory, we can work out 
the critical volume of a compound system and 
other exponential properties around it.  

 
5 Conclusion 

 
We have described in detail two algorithms for 

studying site percolation on square lattice that 
can calculate the value of an observable quantity 
for all values of the site occupation probability 
ranging from zero to one. The percolation 
threshold given by our simulation is pc-s=0.5933, 
which is close to the empirical value. We also 
find turning point of SM in site percolation. 

Moreover, the exponential behavior near critical 
point is discussed in the passage to illustrate wide 
use of percolation theory. In that part, percolation 
theory is verified to be effective in addressing 
practical problems, e.g. charge-injection into 
insolating polymer. The conductivity of polymer 
composites changes vastly around critical point. 
The results can also be applied in many other 
fields including granular materials, composite 
materials, polymers, concrete, aerogel and other 
porous media etc.  
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