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Abstract: Scattering differential section for several central force potentials has been 

simulated in a numerical way in this paper. Here presents the introduction to the theory of 

scattering, the algorithm structure of numerical simulation, and finally the simulation 

results and discussion. This paper is a typical example of comprehensive utilization of 

numerical calculus methods. 

 

Key Words: numerical simulation, scattering differential section, central force potential 

 

1 Introduction to the Theory of Scattering 

1.1 General Theory for two-body system
1,2

 

Scattering is a very common and important phenomenon in classical physics, for it can 

take place either in an astronomical scale or in a microscopic scale. In general, 

scattering is a many-body problem, which can seldom be solved analytically. 

  To simplify the discussion involved here, I shall limit the discussion to two-body 

situation only in this paper. In addition, we will assume the central force field exerting 

on two interacting particles is spherically symmetric. Thus, we have the total angular 

momentum conservation and energy conservation for the system. 

A particle with mass m in a central potential V(r) comes in from the left with an impact 

parameter b. Impact parameter is the minimal perpendicular distance between the 

particle and the extrapolated line started from the center of spherically symmetric 

potential.  

 

(cited from [1]) 



The differential cross section,𝜎(𝜃), describes the probability of a particle’s being 

found in the solid angle element 𝑑𝛺 at the deflection angle 𝜃, where 𝑑𝛺 =

2𝜋𝑟𝑠𝑖𝑛𝜃∙𝑟𝑑𝜃

𝑟2  

 

(cited from [2]) 

If the particles are coming in with a flux density I (number of particles per unit 

cross-sectional area per unit time), the number of particles per unit time within the 

range of db of the impact parameter b is 𝐼 ∙ (2𝜋𝑏 ∙ 𝑑𝑏). Because all the incoming 

particles in this area will go out in the solid angle element 𝑑𝛺 with the probability 

𝜎(𝜃), we have 

𝜎(𝜃) =
𝑏

sin 𝜃
|
𝑑𝑏

𝑑𝜃
| 

 

1.2 Algorithm Structure and Numerical Simulation Scheme 

Basic idea: When we have a particle coming in with an initial impact parameter b, 

the particle will have a certain minimal distance, rm, to the center of potential 

during the whole process. Then there comes a certain angle 𝜃 in which the 

particle leaves.  

 

The basic procedure is taken as the follows: 

○1 Starting known conditions should be: 

A given set of (impact parameter b, energy of incident particle E) 

 

○2 The minimum distance to the center rm 

 

○3 The angle 𝜃 in which the particle leaves 

 

○4 A given b generates a certain 𝜃. Pack them together in corresponding order. 

 

I shall not derive all the analytical results here, since what we only concern here is 

numerical simulation. All the results can be deducted from two conservation 



relations quite straightforwardly (Conservation of angular momentum 𝑙 =

𝑚𝑟2𝜙 ̇  𝑎𝑛𝑑 conservation of energy 𝐸 =
𝑚

2
(𝑟̇2 + 𝑟2𝜙 ̇ 2) + 𝑉(𝑟)). 

 

The corresponding numerical analysis procedure is shown as following: 

○1 Starting known conditions should be: 

A given set of (impact parameter b, energy of incident particle E) 

 

○2 The minimum distance to the center 𝑟𝑚 is given by the equation 

1 −
𝑏2

𝑟𝑚2
−

𝑉(𝑟𝑚)

𝐸
= 0 

I shall solve this equation by secant method (in which Lagrange interpolation 

will also be used). 

 

○3 The angle 𝜃 in which the particle leaves is given by the integral 

𝜃 = 2𝑏

[
 
 
 

∫
𝑑𝑟

𝑟2√1 − (
𝑏
𝑟)

2

∞

𝑏

− ∫
𝑑𝑟

𝑟2√1 − (
𝑏
𝑟)

2

−
𝑉(𝑟)
𝐸

∞

𝑟𝑚
]
 
 
 

 

  I shall evaluate this integral by Simpson method. 

  Explanation to the first term: It’s obvious that its accurate value is just 𝜋. 

However, it should be noticed that both integrals are diverging at the very 

beginning of integration process, that is, when r is near b or rm respectively for 

both integrals. Dividing the integrating process into two parts artificially will 

cancel the rolling errors originated from the initial ‘diverging’ situation, because 

this inevitable circumstance influences both integrals.  

  It’s worthwhile to point out that 𝛥𝜙 is obtained after direct operation of 

integral to  

𝑑𝜙

𝑑𝑟
= ±

𝑏

𝑟2√1 − (
𝑏
𝑟)

2

−
𝑉(𝑟)
𝐸

 

and notice 𝜃 = 𝜋 − 2𝛥𝜙. 

It is vital for us to decide when the plus sigh should be adopted or the minus 

should. From the point of view of the physical process, in the first half process the 

minus sigh must be adopted and in the second half process plus sigh is the correct 

on to describe the real physical process. 

 

○4 A given b generates a certain 𝜃. Pack them together in corresponding order. 



  I shall evaluate the derivative 
𝑑𝑏

𝑑𝜃
 by the three-point formula. 

 

2 Simulation results 

2.1 Yukuwa Potential 𝑉(𝑟) =
𝜅

𝑟
𝑒−

𝑟

𝑎 

Potential parameters: 𝜅 = 1, 𝑎 = 100 

Incident parameters: E=10
5
 

Integral parameters: h=10
-5

, double Simpson Integral 
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The above graph conveys that when a becomes larger, possibility distribution 

has been shifted to the ‘right direction’ along 𝜃 axis. In other words, for a given 

small scattering angle, it seems I could find more particles when a is large (less 

scattered). 

2.2 Coulomb Potential 𝑉(𝑟) =
1

4𝜋𝜖0

1

𝑟
 

Incidence parameters: 𝐸 = 5 × 1014,  

Integral Parameters: h=10
-5

, double Simpson Integral 
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2.3 Leonnard-Jones Potential 𝑉(𝑟) = 4𝜖 [(
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] 

Potential parameters for water molecules: 𝜖 = 1.8 × 10−21, 𝜎 = 0.32 × 10−9 

Tested when b0=10
-8

, db=10
-9

, incident energy E set as 10
-20

(>> Potential Energy 

~10
-27

, around 7 scales larger) 

Integral parameters set as h=10
-4

, n=10
7
, double Simpson integral 
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3 Brief Explanation to the physical meaning of simulation graph 

  In the first section, I have mentioned that the differential cross section tells the 

possibility at which the leaving particles are found at a specific angle 𝜃.  

What we can expect is that when the total mechanical energy is large, the particle is 

high likely to overcome the attractive or compelling force and to leave the area where 

the potential functions effectively in a short time. Therefore, the divergent angle 

should be pretty small.  

What is more important, with a fixed incident energy E, we can predict that, when a 

group of particles shooting towards and crossing the potential area, it is harder to find 

outgoing particles with a significantly large distorted angle for its movement than 

those with a small distorted angle. All reasonable plots should depict such an overall 

tendency that as the distorted angle 𝜃 is increasing, the possibility to find outgoing 

particles, that is, the differential cross section 𝜎, presents a decreasing tendency. In 

addition, the reasonable value of ln(σ) should be positive, s 

However, I cannot specify the appearance of the curve, or more mathematically 

presented, the function characteristics of 𝜎 = 𝜎(𝜃). Whether the behavior of the curve 

will be distorted or not largely depends on the quality of numerical calculation, which 

I shall discuss in the following section. 

 

4 Discussion about NUMERICAL ERRORS 

This part is probably the most interesting part! 

4.1 The influence of the initial parameters 

The smaller the incident energy is, the larger the numerical error will be. 

Yukawa Potential when h=10
-5

, E=10
3
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It is much less smooth than the result we get when we set the incident energy E 

as 10
5
. It tells us that the Simpson integration method is still too rough to depict a 

relatively small system behavior shift, i.e. when the energy is altered. 

 

4.2 The influence of the interval of arguments in numerical integration ‘h’ 

Yukawa Potential when h=0.01, E=10
5
, double Simpson Integral
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Now the problem is extremely overwhelming, since the whole tendency is 

completely up-side-down switch---an INCREASING tendency. This is definitely 

not acceptable from the point of view of physics.  

In the beginning stage of my work to this paper, I always got this unphysical result, 

which was quite frustrating to me. It shows that how insufficient the accuracy of 

Simpson Integration is. 

 



4.3 Always providing physically reasonable initial conditions 

h=10
-5

 for Coulomb Potential when E=1 

V~10
14

, now E<<V, implying Ek<0!!!
 

0 2 4

-6

-3

0

ln
(

)



 ln(sigma)

 

4.4 The influence of ‘𝜋’ 

Only one Simpson Integration conducted, the first integration is directly 

substituted by its analytical value 𝜋 

Yukawa Potential: 

Potential parameters: 𝜅 = 1, 𝑎 = 100 

Incidence parameters: E=10
5
 

Integral parameters: h=10
-5

, SINGLE Simpson Integral 

0 1 2 3

-4

-2

0

2

ln
(

)



 -1.#IND

 

Coulomb Potential: 

Potential parameters: 𝜅 = 1, 𝑎 = 100 

Incidence parameters: E=5×10
14

 



Integral parameters: h=10
-5

, SINGLE Simpson Integral 
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    It is undeniable that the line shape presented is terrifically beautiful! What is 

more important, it correctly shows the real line shape of the analytical differential 

cross section 𝜎 = 𝜎(𝜃). What we sacrifice here is still ‘physically accepted’. The last 

8 scattering angles 𝜃 of the Yukawa potential is SMALLER than 0, which is definitely 

wrong in physics (the particle shot from the upper half space and leaving in the lower 

half space with a scattering angle larger than 180°!!!) For Coulomb potential there 

are also 8 final scattering angles 𝜃 are smaller than 0!! 

    The following data is the obtained using SINGLE Simpson integration for 

Yukawa Potential. 

  

Table 1 Data of Single Simpson Integral for Yukawa Potential 

  Here presents a tradeoff in front of us:  

A Physically Correct Simulation with Terrible Line Shape 

VS. 

A Beautiful Line Shape (probably the same as the analytical one) with Wrong 

θ ln(σ)

-1.19981 -1.#IND

-1.06256 -1.#IND

-0.92071 -1.#IND

-0.77396 -1.#IND

-0.62194 -1.#IND

-0.46425 -1.#IND

-0.30044 -1.#IND

-0.12998 -1.#IND

0.04776 1.1716

0.2335 -0.54559

θ ln(σ)

0.42811 -1.28165

0.63267 -1.80216

0.8485 -2.22642

1.0773 -2.5977

1.32133 -2.93788

1.58375 -3.26147

1.86923 -3.58205

2.1855 -3.92014

2.54796 -4.33836

3.00693 -4.70303



Physical Meaning. 

 

5 Conclusion 

  Scattering processes with respect to three central potentials have been simulated in 

this paper. Possible numerical errors have also been thoroughly discussed. I believe 

when a better numerical integration method is applied, the outcome will be much 

more plausible.  
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7 Additional Notes on How to Use the Code 

(1) You should set initial conditions in the beginning part of the code where many 

constants are defined. 

(2) Choose Different Potentials: When you want to change to another potential 

function which you want to simulate, change the last argument in the program 

function secant and the function in the integrand, which have both been noted in 

the original code. The last argument is a pointer pointing to the called function. 

(3) If you want to invalidate the first integral which has the certain value π, make the 

integration code part of ‘g1’ to be notification and also choose the second output 

command of ‘theta[i]’. 


