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Emergent dimensional reduction of the spin sector in a model for narrow-band manganites
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The widely used double-exchange model for manganites is shown to support various “striped” phases at filling
fractions 1/n (n = 3,4, 5, . ..), in the previously unexplored regime of narrow bandwidth and small Jahn-Teller
coupling. Working in two dimensions, our main result is that these stripes can be individually spin flipped without
a physically relevant change in the energy, i.e., we find a large ground-state manifold with nearly degenerate
energies. The two-dimensional spin system thus displays an unexpected dynamically generated dimensional
reduction into decoupled one-dimensional stripes, even though the electronic states remain two dimensional.
Relations of our results with recent literature addressing compass models in quantum computing are discussed.
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I. INTRODUCTION

The manganite family of Mn-oxide materials has attracted
considerable attention mainly due to the colossal magne-
toresistance effect, where a magnetic field hugely enhances
the electrical conductivity.! More recently, multiferroicity has
been found in some members of this family, particularly, when
chemical substitution reduces the bandwidth of the mobile
electrons. Magnetic multiferroicity, where a ferroelectric (FE)
polarization is induced by the magnetic order, has lately been
intensively investigated.”™ Furthermore, manganites provide a
fertile ground to study various ordered phases where magnetic,
orbital, and charge degrees of freedom interact and compete.
As a result of the large number of tendencies simultaneously
active on comparable energy scales, phases with very different
physical properties can nevertheless be very close in energy.>

The competition of all these active degrees of freedom often
leads to “striped” phases where electron motion is confined to
one-dimensional (1D) subspaces. In manganites at large hole
doping, for example, electrons mainly occupy orbitals that
point along either the x or the y direction. Spins then order
ferromagnetically along this direction, because this favors
the electronic kinetic energy via the double-exchange (DE)
mechanism. In the other direction, where the electronic motion
is suppressed, then DE is not active, and antiferromagnetic
(AF) superexchange dominates. This establishes AF spin cor-
relations, leading to the “spin striped” C-type AF phase.!’~°
Other examples involve the ferromagnetic (FM) zigzag chains,
which are antiferromagnetically coupled among themselves,
that form the well-known CE-AF phase at half filling or the
E-AF phase in the undoped limit."! The ground state of these
phases usually have collinear magnetic order, i.e., alignment
between any two spins is either perfectly FM or AF. Another
aspect to note is that while the electronic kinetic energy is 1D,
the magnetic order is fully two dimensional (2D), with AF
order between the chains mediated by superexchange (SE). In
the absence of AF SE, a completely FM state with 2D electron
motion is energetically favorable.

Recently, some of us predicted the existence of a new mul-
tiferroic phase, dubbed spin-orthogonal stripe (SOS) phase,
located in the previously unexplored region of quarter-hole
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doping, small Jahn-Teller electron-lattice coupling, and narrow
eg-electron bandwidth.!! In contrast to the “striped” phases
mentioned above, the competition between FM DE and AF
SE stabilizes noncollinear magnetic order on some bonds,
where the nearest-neighbor (NN) #,, spins are orthogonal
to one another. As in an analogous half-doped noncollinear
phase,'? this competition is expected to lead to a relatively
high multiferroic critical temperature (~100 K). These phases
can be visualized as composed of “thick” stripes, where all
magnetic correlations within a stripe are collinear, i.e., AF or
FM, while adjacent stripes display noncollinear spins.

In the present publication, we report that the SOS phase
described above, as well as similar phases at dopings x = 1/n
with integer n > 2, have another unexpected property, namely,
a very highly degenerate ground-state manifold. We find that
the spins of any collinear stripe can be rotated without a
significant change in energy, as long as the spins in adjacent
stripes remain orthogonal. Spins in next-nearest-neighbor
stripes can thus be at arbitrary angles relative to each other,
implying that there is no magnetic order in the direction
perpendicular to the stripes. Analogous dimensional reduction
effects on the magnetic order, where a higher dimensional
(2D in our case) spin system decouples into lower dimen-
sional (1D) subsystems, have been experimentally observed
in other contexts such as near a quantum-critical point.'?
Three-dimensional spin-ice systems'# also show macroscopic
degeneracy, and they can decouple into 2D planes when
a magnetic field “switches off” some spins connecting the
planes.'>16

In contrast to spin ice, where a local symmetry allows
two states for each tetrahedron, leading to a macroscopic
ground-state degeneracy and an extensive entropy proportional
to the system size N, the near degeneracy reported here is
not quite macroscopic. The degeneracy involves flipping or
rotating whole stripes, and the number of stripes in the 2D
plane grows with the square root of the system size. This
indicates that the emergent degeneracy of the ground state is
intermediate between local and global. Similar intermediate
symmetry effects connected to dimensional reduction have
been extensively discussed in orbital-only models, as well
as in the context of quantum computation. An example is

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.84.024408

LIANG, DAGHOFER, DONG, SEN, AND DAGOTTO

the so-called “compass-model” where the x(y) components
of the orbital pseudospins are coupled Ising-like in the x(y)
direction. This model was originally introduced to capture
the frustrated hoppings of the e, orbitals of manganites.'” Its
low-energy states are ordered along only one dimension,'®!°
implying a symmetry that, again, is intermediate between local
and global.'%?0

Even though the compass model was originally suggested to
model the frustration inherent in degenerate e, orbitals in 2D,
the actual (partially frustrated) Hamiltonian describing these
orbitals does not exhibit such a high degeneracy. In fact, it has
been shown that the peculiar properties of the compass model
are sensitive to even rather slight modifications of the Hamil-
tonian and that a unique ground state with alternating orbital
order sets easily when the model is modified toward a more
realistic description of 2D e, systems.?! In three dimensions,
on the other hand, the model with arealistic e, -orbital structure
does decouple into planes,>** as long as the magnetic order
is fully FM. Once the magnetic degree of freedom is included,
however, the ground state turns out to show AF order along the
z direction. This changes the relevant orbital Hamiltonian and
as a consequence three-dimensional spin-orbital order with a
nondegenerate ground state is stabilized. In addition to the e,
orbital degrees of freedom in manganites, heavier elements
with a strong relativistic spin-orbit interaction were discussed
as a possible realization of compass models.”> However,
here an isotropic Heisenberg term due to Hund’s coupling
would likely be present as well,® again inducing 2D order
without 2V degeneracy.?’ Finally, it was pointed out that the
compass model describes properties desired for fault-tolerant
gbits,'>?® and coupled Josephson-junction arrays have been
implemented for this purpose.?

The directional ordering described by the compass model
is thus potentially very interesting, but dedicated Josephson-
junction arrays appear so far the only systems showing such
an effect. In the condensed-matter systems conjectured to
display this physics based on particular features of their
low-energy Hamiltonians, additional—even rather small>’—
perturbations, as often present in realistic descriptions of
materials, have thus far been found to lift the high degeneracy.
It has been suggested that the opposite route might work, i.e.,
a more complex Hamiltonian, which does not itself have the
appropriate symmetry intermediate between local and global,
might still support a ground-state manifold that has such
symmetries.”3%3! As mentioned above, some experimental
evidence of such behavior exists,!® and a similar effect is
known in the case of spinice.!>!® However, we are not aware of
any model where “compass-like” behavior has been shown to
emerge effectively for the ground-state manifold. We present
here an unbiased numerical study showing this to happen in a
Hamiltonian realistic for manganites, in a particular region of
parameter space.

Section II contains the Model, which describes not only the
e, orbital system at the origin of the compass model, but also
includes the spin and even the coupling to lattice distortions.
In Sec. III, the numerical techniques are presented. In Sec. IV,
we show that the 2D spin system effectively decomposes
into uncoupled 1D stripes, while the electronic kinetic energy
remains fully 2D. We also discuss orbital occupation and the
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relation between the magnetic degeneracy and dispersionless
electronic states.

II. MODEL

The Hamiltonian considered here has been extensively
studied in the past decade, and it has been shown to be very
helpful to understand the complex behavior of manganites. In
particular, the model reproduces the large variety of phases
observed in manganites, e.g., A-type AF, C-type AF, FM,
CE-AF, or E-AF, and also the colossal-magnetoresistance
regime.! The Hamiltonian is given by
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The first term gives the kinetic energy of electrons in the two
e, orbitals, containing the electronic hopping on NN bonds
(ij) along the x and y directions (we study a 2D lattice
for simplicity). The operator cl (c;,,) creates (annihilates) an

i
electron at site i and at orbital «, where the orbital indices «
and B run over the d,>_,> and d,>_> orbitals of the Mn ions.
The orbital- and direction-dependent hopping parameters are

given by

3. _43 3 43
af __ 4 4 aff __ 4 4
"= (_ﬁ 1 )lo, 1t = <+£ | )to, (2)
4

4 4 4

where the interorbital hoppings are negative (positive) on
bonds along the x(y) direction, and zy, = 0.2-0.5 eV defines the
energy unit.! The Hund’s coupling, which links the itinerant
electrons to localized 1, spins, is here taken to be infinite for
simplicity, which implies that the e, electrons’ spin is always
parallel to the local #,, spin. Neither Hund’s rule coupling nor
the electron spin thus appear explicitly in the Hamiltonian.
This approach leads to a modification of the bare hopping that
is captured by a (complex) Berry phase factor

Q;; = cos % cos %j + sin 5’ sin %e’i("’f"”f), 3)
which depends on the angles 6;, ¢; and 6;, ¢; that define
the classical localized spins at sites i and j.*> Between sites
with parallel (antiparallel) #,, spins, the Berry phase factor
becomes one (zero), implying that the kinetic energy favors
parallel spins due to the DE mechanism. Between noncollinear
spins, i.e., spins with a relative angle between 0° and 180°, its
absolute value is between 0 and 1, and it can be negative or
even complex.

The second term of Eq. (1) describes the direct AF SE
coupling between NN #,, spins. The third term represents
the coupling of e, electrons with the lattice, via the Jahn-
Teller JT) (Q, and Q3) and breathing (Q;) modes. X is a
dimensionless lattice-electron coupling coefficient. Only the
x—y plane distortions are considered here, and if the overall
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lattice shape (square) can be assumed not to change, QO
can be set to —+/2Q3. The lattice normal modes Q, and
Q3 are related to shifts §%, §¥ (6° = 0) of the coordinates
of the six oxygens surrounding each manganese via Q, =

(8* —8°)/v/2 and Q3 = —(8" + 8)/v/6. nig =c| c,, and
n; = n;2_y + n;3,2_,2 are density operators; while

¢ = (ni,xz—y2 - ni,3zz—r2)

j 5 : 4)

T T
X (ci,xz—yzci,Szz—rZ + Ci,312—r2Ci,x2—y2)

7= . : ®)
denote the orbital pseudospin operators, similar to the Pauli
matrices for spins.! The lattice distortions are thus coupled
to the orbital degree of freedom. Undoped manganites corre-
spond to a filling of one electron per Mn, while doping x and
filling n are related vian = 1 — x.

III. METHODS

Markov-chain Monte Carlo (MCMC), zero-T optimization,
and variational methods were used to study the ground-state
and low-temperature properties of the Hamiltonian Eq. (1).
This Hamiltonian couples noninteracting electrons to the
classical variables g; = {6, ,¢, ,Sf,éiy } describing the localized
spins and lattice distortions. For any set of g’s, Eq. (1) is
diagonalized using standard library routines, and the free
energy of the electronic system can be easily evaluated via
the usual equations from statistical physics. The energy is
then used in a conventional MCMC procedure to determine
whether a new set of g; should be accepted, as detailed in
various publications.! Since care must be taken that the results
are independent from the initial configuration and that thermal
equilibrium has been reached, such MCMC simulations are
quite CPU-time consuming. Their huge advantage is that they
are unbiased, meaning that, for long enough run time, they
will converge to the true relevant state of the cluster under
study, regardless of the initial state used. We employed this
method on 6 x 6 lattices to obtain the phase diagram in the
A—Jar plane, and on 12 x 12 lattices for a selected number of
points.

The MCMC is complemented by the zero-7 optimization
method where the ¢’s are optimized to reach the lowest
possible energy by employing the derivatives %, as detailed
in Ref. 33. This optimization method is particularly useful
around a local energy minimum, where it reaches higher
precision than the MCMC and is, thus, efficiently combined
with MCMC, which is better at finding the global minimum.
Finally, we also complement these studies by a variational
comparison of the energies of fixed configurations of classical
spins and lattice distortions. While the variational approach
is not unbiased, because only chosen configurations were
combined, it is valuable, because far larger lattices can be
reached; it was employed, e.g., to verify that various SOS; 3
configurations indeed are practically degenerate. In addition
to L x L squares, this approach was also employed on
V2L, x \/2L, rectangles. Periodic boundary conditions were
used in MCMC and optimization, and for variational energy
comparison. To calculate selected observables, such as the
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spin-structure factor and the density of states, we additionally
used twisted boundary conditions leading to a denser k mesh,
as described in, e.g., Ref. 34.

IV. RESULTS

Motivated by the recent prediction of the x = 1/4 SOS
phase,'!! and of a similar phase at half doping,'> we
have investigated other fillings x = 1/3, 1/5, ..., focusing
here on parameters relevant to narrow-band manganites.
The discussion below mainly focuses on results for x = 1/3,
where the SOS phase has narrower stripes than for smaller x
and can thus be investigated on smaller clusters. A variational
energy comparison and some MCMC studies were also
performed for n > 5, leading to analogous results.

A. Phase diagram and highly degenerate ground state manifold

Figure 1(a) shows a snapshot obtained in a MCMC run
for Jap = 0.19% and A = 0, where the spins happened to
lie almost within the x—y plane. It illustrates the SOS phase
expected for a filling of 1/3, actually just one of its realizations,
see the discussion below. As discussed for x = 1 /4,11 the SOS
phase consists of domains of the E-AF phase of undoped
manganites [illustrated in Fig. 1(b)], with spins rotated by 90°
between neighboring domains. Each domain can be visualized
as one “stripe,” see Fig. 1(a), and the spins are then collinear
within each of the stripes (regions between a pair of dashed
lines), but between stripes they are orthogonal to each other.
In Fig. 2, the ground-state energy of the SOS;,3 phase is
compared to that of various other phases in the absence of
electron-phonon coupling (A = 0), and it is clear that the
SOS;,3 phase has the lowest energy for a range of Jar. This is
corroborated by data points obtained with unbiased MCMC,
which closely follow the variational energies, indicating that
the true ground state has been found.
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FIG. 1. (Color online) (a) Monte-Carlo snapshot for Jap =
0.191, A =0, and Bt, = 1200, in the regime of the SOS, 3 phase.
It can be visualized as composed of domains of the E-AF phase
illustrated in the cartoon (b). (a) NN domains (“stripes”) are separated
by dashed lines, they have spins at right angles. (b) Dashed lines
indicate the zigzag FM chains of the E-AF phase; in (a) shading
(color) indicates a few of the short segments of the E-phase zigzag
chains that survive in the SOS; /3 phase, later called “arrows.”
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FIG. 2. (Color online) Zero temperature (7' = 0) energies (per
site) of several magnetic phases, at doping x = 1/3 and A =0, vs
Jar. Dots represent MCMC results at 7 = 0.002 on a 6 x 6 lattice
that closely follows the variational results. S6 denotes a spiral phase
with a period of 6 lattice spacings (Ref. 35), while a 12 x 12 lattices
shows one with period 12; this phase thus converges to FM order with
increasing lattice sizes (Ref. 36).

The phase diagram including electron-phonon coupling A
in addition to Jap is given in Fig. 3, and it shows that the
SOS;,3 phase remains a stable ground state for A < 0.7. As
it may be expected, DE drives a FM metallic state at smaller
Jar, while large Jarp stabilizes a fully G-type AF phase. At
large A and intermediate Jar, the SOS{/3 phase is replaced by
a variant of the exotic but well studied"® CE phase.

However, our main result is that our calculations have
revealed that this ground state is not unique: if all spins within
one stripe are flipped by 180° (i.e., inverted), the total energy
remains nearly unchanged. This is illustrated in Figs. 4(a)
and 4(b), where two almost degenerate variants of the SOS; 3
phase are illustrated. Taking into account noncoplanar spin
configurations as well, the spins in each stripe can in fact be
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FIG. 3. (Color online) Zero-T phase diagram of model Eq. (1) at
x =1/3, varying A and Jag. Variational technique results are shown
with shading (colors). The FM DE metallic phase dominates; large
Jar stabilizes AF phases. The “C,;3E,;3” phase is a variant (Refs. 6
and 11) of the CE phase at half filling (Ref. 1). The SOS,,; phase
at intermediate J,r and small A is analogous to the x = 1/4 SOS; 4
phase (Ref. 11), and is highly degenerate. Full dots show where
MCMC (for 6 x 6 sites) confirmed the results; open dots are MCMC
results that remained inconclusive due to metastabilities caused by
phase competition. For details see Ref. 11.
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FIG. 4. (Color online) Cartoon for the spin patterns for two
quasidegenerate states of the SOS, /3 phase (a) and (b). Lines between
domains with orthogonal spins illustrate the periodic pattern of Berry
phases: thin lines denote positive sign and thick lines denote negative
sign. The pattern in (b) is reached by flipping all spins in the top black
stripe of (a), which entails changes in the signs of the Berry phases,
but induces an energy difference of only 1073#. The dotted lines
connecting three ferromagnetically aligned spins indicate “arrows”
of the E phase, see Fig. 1. In the pattern in (c), “arrows” in adjacent
domains point in opposite directions. The energy per site in this phase
is 10727y higher than that of the SOS;; phase; flipping spins of one
stripe induces energy differences of ~5 x 101, i.e., at least 50 times
larger than between (a) and (b).

rotated by any angle, as long as the spins in adjacent stripes
remain orthogonal.

On square clusters, the difference in energy per site before
and after a stripe spin flip is merely ~10~¢ for flipping one
stripe of a 12 x 12 lattice. This is 3 orders of magnitude smaller
than the energy differences with other states shown in Fig. 2;
similar conclusions were reached using tilted rectangles. Finite
electron-phonon coupling A > 0 as well as finite Hund’s
rule coupling Jyyg < oo leave the near degeneracy intact.
Even rather small Hund’s coupling 6#y & 1.2 eV increases the
energy split only to &5 x 1071, still more than 2 orders of
magnitude smaller than the energy differences to other phases
(A 2 0.7ty eventually drives a transition to the C;,3E,/3 state,
see Fig. 3).

B. Magnetic, orbital, and charge patterns

Effectively, the 2D system decouples into 1D stripes, whose
direction can be rotated independently from the other stripes
as long as spins in NN stripes are at right angles. The relative
orientation of stripes at larger distance is thus arbitrary and
the spin structure factor S(k) is finite along a whole line in
momentum space, see Fig. 5(b), similar to results for the
compass model.”” The S(k) modulation is due to the width
of a double stripe.

Since spins on all bonds between stripes are orthogonal, the
absolute value of the hopping connecting the stripes is the same
in all realizations of the SOS;/; phase, with |Q;;]| = 1/4/2
obtained from Eq. (3). However, having the same |©2;;] is not
enough to establish such a degeneracy, as the complex phase
of the Berry phase, in general, cannot be neglected. In the

024408-4



EMERGENT DIMENSIONAL REDUCTION OF THE SPIN . ..

SO p——
SOS;y —=

1.0

0.5

Spin structure factor

o

0
(0,m)  (m/4.3m/4) (n/2,w/2) (3n/4m/4)  (w0)

FIG. 5. (Color online) Spin-structure factor S(k) along the line
(7,0) to (0,7), calculated for the SOS; 3 phase by averaging over
all 2'¢ degenerate realizations with stripes along one direction of
a 24+/2 x /2 cluster (A = 0). S(k) ~ 0 for all k except the line
running from (7,0) to (0,7). Results at x = 1/4, 1/5, and 1/6 are also
shown.

“flux” phase,?’ NN spins are always orthogonal and flipping a
spin would not change this; but there is nevertheless a unique
ground state stabilized by the Berry phase. Similarly, flipping
a stripe of the “SOS;,,” phase at half doping'? preserves
the absolute value of all hoppings, yet costs far more energy
than flipping a stripe of the SOS;,3 phase. In order to show
that the ground-state degeneracy is not due solely to having
orthogonal spins, it is illustrative to analyze the “modified”
SOS/3 phase depicted in Fig. 4(c). Similar to the actual
SOS| 3 phase, this phase is made up of domains of the E-AF
phase that are orthogonal to each other. The only difference
is that the “arrows” formed by the FM spins point in opposite
directions in adjacent stripes in this modified phase. Even
though the spins along the boundaries between stripes are the
same in both phases, the modified phase has a higher energy
per site by 1072y, which is larger than that of the energy
difference to the C;/3E;3 phase, see Fig. 2, indicating that the
internal composition of the stripes matters as much as their
boundaries. Moreover, the modified phase does not show such
a near perfect degeneracy, as flipping a stripe on a 12 x 12
lattice costs &5 x 10~*¢,, and while this is not a large energy
difference, it is at least 50 times as much as for the SOS; 3
phase.

The dominant orbital occupancy and its relation to the spin
pattern is shown in Fig. 6. The building block of the SOS; 3
phase is an arrow made of three FM spins, with a “center”
and two “wings” that point in the x and y directions. For
each site, one can calculate the dominant linear combination
of the two e, orbitals, i.e., the orbital with the highest density.
At the wings of the arrows, these are the directional orbitals
pointing to the center, because they can maximize the kinetic
energy along the FM bond,' see Fig. 6; they are half filled.
On the central site, the x> — y? orbital dominates due to its
large overlap with adjacent sites. However, it turns out that the
electronic configuration of the SOS;,3 phase cannot be fully
characterized in terms of singly occupied orbitals, which is
reminiscent of the edge sites in the CE phase.?® Even though
the depicted orbitals have the highest density, some electronic
weight is also found in the orthogonal states and Fig. 6(a) only
partially describes the orbital state. In the center, the explicit
occupancies are thus n,2_,» = 0.4 and n3,2_,>» = 0.28, and in
the “wings” along x/y, we find ny>_2,2_,» = 0.24 in addition
to n3y2_,2/3,2_,2 = 0.5. The total density is the sum of the two
orbital densities on each site, and shows only weak stripe
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FIG. 6. (Color online) (a) Zero-T spin and orbital ordering of
the SOS, 3 phase, the ground state for 0.17 < Jap < 0.21 (A = 0),
see Fig. 3. For each site, the linear combination |a) = cos a|3z% —
r?) + sinar|x? — y?) is depicted that has the highest density, i.e., for
the value of ¢ maximizing n; ,. (b) The orbital with maximal density
is shown for the modified SOS, 3 phase with the spin pattern given
in Fig. 4(c). While the depicted orbital is the one with the highest
density, these cartoons do not fully describe the orbital states, as
some density is also found in the orthogonal orbitals, see text.

modulation, with n = 0.68 in the center and n = 0.66 in the
wings.

The relatively large density n,2_» =0.24 in a “wing”
pointing along x may seem surprising, as the y> — z> orbital
cannot hop along the FM bond directed along x to the center. '
However, it can hop with an only slightly reduced amplitude
|21 =1/ V/2 to an adjacent stripe. This process becomes even
more important in the modified SOS;,3 phase of Fig. 4(c),
whose dominant orbitals are shown in Fig. 6(b). In this case, the
1/+/2 interstripe hopping connects two directional 3x2 — r2
(or 3y? — r?) orbitals with a large overlap. We will discuss in
the next section (Sec. IV C) why the hoppings between stripes
cannot be neglected in either phase.

C. Two-dimensional Kinetic energy and dispersionless states

As discussed above, the effective hoppings with their Berry
phases are not the same in the various (almost) degenerate
states of the SOS;,; phase. It may be tempting to believe
that one can find a local gauge transformation that transforms
the sign patters of one realization into that of another, with a
flipped stripe. In this case, the electronic Hamiltonians would
be equivalent and thus have the same eigenenergies, explaining
the degeneracy. However, the density of states shown in Fig. 7
is very different for different SOS, 3 patterns, indicating that
the eigenenergies of their electronic Hamiltonians are in fact
quite different.

That the different SOS;,3 configurations have different
electronic Hamiltonians can also be inferred from the one-
particle spectral density A(Kk,w) shown in Fig. 8. One aspect
to note is that the occupied states do not show any (quasi-) 1D
character, and the states are dispersive both along the stripes
[(0,0)—(rr,m)] and perpendicular to them [(0,0)-(z, — )]. In
fact, the kinetic energy between the stripes is necessary for
the SOS;,3 phase, as the orthogonal spin arrangements are
stabilized by the competition between the FM DE and AF SE
processes. Electrons cannot hop directly along the stripes, as
NN spins are AF ordered, but they move along this direction via
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FIG. 7. (Color online) (a) Density of states N(w) (A = 0) for two
patterns of the SOS,3 phase, the phase shown in Fig. 4(c), and the
SOS;; phase (Ref. 12). The arrow indicates the dispersionless states
of the SOS, 3 phases.

neighboring stripes, leading to a somewhat weaker dispersion
than perpendicular to the stripes.

The spectral density of the SOS;,; phase in Fig. 8 can
be compared to that of a toy model where all hoppings
are replaced by their absolute values. As can be seen in
Fig. 9, the spectral density then consists of six coherent
bands (the dispersionless band at v = 0 is doubly degenerate)
corresponding to six states formed by the two orbitals of three
sites within each arrow. The results for the full model in Fig. 8
shows some remnants of these bands, especially around (0,0)
and (r,7). At other momenta, however, the bands split or the
weight even appears incoherent. This reflects the additional

" : : . . 2
) == | BE
20 1
3 - — | ————— -
LT = = = =] 0.5
- i e - -:H -
S - i
: : : : 0
0,00 Om (m0) (mm) (0,0) (w-m
k
2 T T T T 2
b — — 1
(b) Ny _ | 15
Z 0 |
e S - o
=L = =M 05
S ——— "B
2 L d
1 L 1 1 0
0,00 O, (70 (mm (0,0) (m-m)
k

FIG. 8. (Color online) Spectral density A(k,w) for two patterns
of the SOS;;3 phase at A =0. The L, x L, =24 x 24 lattice is
used, and the E-AF domains run in the (1,1) direction, from (0,0) to
(24,24). Periodic boundary conditions are employed, and peaks were
broadened with a Lorentzian with a width § = 0.02¢,.
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FIG. 9. (Color online) Spectral density A(k,w) for an artificial
reference model where all hoppings are replaced by their absolute
values; this phase has the same energy as the SOS,;; phase.
Parameters are as in Fig. 8.

modulation of the hoppings by the complex Berry phase,
which can lead to superstructures and to effective disorder.
As one can infer from the density of states, see Fig. 7, spectral
weight is not only shifted to different momenta in different
SOS| 3 configurations, but also transferred between different
energies.

The dimensional reduction unveiled here appears linked to
the dispersionless edge states of the E-AF phase,>*° which
are unoccupied in the SOS;,, phases [see the delta peak in
the density of states, Fig. 7, and the dispersionless states
in A(k,w) in Fig. 8]. While the one-particle energies of the
occupied bands change, the dispersionless states are unaffected
by flipping a stripe. The “SOS;,” phase,'? and the modified
phase of Fig. 4(c) do not have such dispersionless states
and do also not have degenerate states, and we will thus
analyze the dispersionless states and their impact on the SOS /3
phase.

In finite E-AF clusters, the dispersionless states are 2 —x
and y*> — z? orbitals localized on sites along the edge. These
72 — x? (y* — z?) orbitals are localized because their orbital
symmetry only permits them to hop to a single site, their
neighbor in the x-(y-)direction, but this bond is AF, and
hopping is thus suppressed by the magnetic order. In the
bulk, the bond in the opposite direction would be FM, and
the orbital can thus delocalize, but this bond is missing at the
cluster edge. If one considers a single stripe of the SOS; 3
phase as an isolated E-AF domain, then the electrons can only
delocalize within (i) both orbitals of the central site and (ii) the
directional orbitals pointing toward it on the two wings [these
orbitals are shown in Fig. 6]. The orthogonal (planar) orbitals
on the wings do not hybridize with any other orbital of the
stripe and are the localized edge states, which are empty at
x=1/3.

Asdiscussed above in Sec. IV B, however, hopping between
the stripes is not suppressed and the arrows on adjacent stripes
are thus coupled. As illustrated in Fig. 10, electrons in the
planar orbitals can hop to the directional orbital on the wing site
of an adjacent stripe. This leads to the subsystem consisting of
the six orbitals drawn with black lines in Fig. 10. After taking
into account reflection symmetry with respect to the central

2
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FIG. 10. (Color online) Two orbital building blocks of the SOS 3
phase. Black arrows give the SOS;,3 spin pattern and dashed lines
indicate the stripes. Orbitals shown with shading/lines illustrate the
unit cells corresponding to two arrows in adjacent stripes. Site A is
a “center” site with occupancy in both the x> — y? and the 3z% — r?
orbitals, site B is a “wing” site, only the more highly occupied 3y? —
r2 orbital is shown. Site C is also a “wing” site, but here both orbitals
are shown, the planar y?> — z? orbital is drawn with lines and the
directional 3x? — r? with shading. An electron in the planar y> — z2
orbital can only hop along + to site B of the adjacent stripe: It cannot
hop along the x-direction due to its orbital symmetry (Ref. 1), and it
cannot hop along the —y bond due to the AF spins.

site, the even and odd subspace each yields a 3 x 3 matrix

0 —lejo 0
V3 i
Hyo=| ~teo 0 —3%? | (6
_ By o—igp
0 Qﬁ’e 0

where subscripts e¢/o denote the even and odd subspace, , ,

is given by %" for the even case and %3 for the odd case, and
¢ denotes the complex Berry phase. It can be easily seen that
such a matrix always has one eigenvalue ¢ = 0 and that the
corresponding eigenvector only lives on the first and third sites.
Here, this implies that the directional orbital on the wing sites
has no overlap with dispersionless states. The only process
connecting the building blocks described by Eq. (6) is the
hopping —%e‘i‘f’ between two directional orbitals sitting
on wing sites belonging to adjacent stripes, e.g., between the
3y% — r? orbital on site B and the 3x> — r? orbital on site
C in Fig. 10. Since it only acts on the directional orbitals,
which are not involved in the € = O states, the latter are not
affected and remain dispersionless in the SOS;,; phase. In
the “SOS;,,” phase,12 the E-phase domains are too narrow
to support dispersionless states and in the modified phase of
Fig. 4(c), where the “arrows” of the E phase point in opposite
directions in adjacent domains, the different orbital pattern
shown in Fig. 6 also prevents similar dispersionless states.
Such a protection of a large ground-state degeneracy by
dispersionless states is reminiscent of spin ice, where flat bands
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enforce the ice rules.*’ The notion that the protection of a
degeneracy is caused by the dispersionless states at = 0 can
be motivated by observing that the lack of dispersion implies
that the states are completely localized and do not communi-
cate with other, dispersive, states. The energy of the occupied
subband centered around w = —e ~ —1.2¢) can then only be
affected by processes involving the symmetric unoccupied
states at w = +€. Treating the hybridization between these
two subbands in perturbation theory, valid for large energy
differences 2¢ > 2’—02 the second-order contribution can be

shown to be independent of the hopping’s complex phase and
the third-order contribution drops out entirely. If hybridization
sensitive to the Berry phase then occurs almost exclusively
within the occupied subband, the individual one-particle ener-
gies seen in the density of states can be changed, but the total
energy cannot, because all energy gained by one state is lost by
another.

V. DISCUSSION AND CONCLUSIONS

The E-AF phase, which provides the stripe building
blocks, displays FE polarization due to exchange striction.*!*?
Additionally, the many bonds with noncollinear spins lead to
a sizable Dzyaloshinskii-Moriya interaction. We found that
the FE polarization caused by the latter is larger in some
configurations and smaller in others. This causes an additional
energy difference, but as long as it is small compared to the en-
ergy separating the SOS /3 ground-state manifold from excited
states, this should not qualitatively alter the physical behavior
that we described here. On the other hand, the different FE
properties might provide a handle to manipulate the stripes.
It should finally be noted that the multiferroic properties of
a large collection of nearly degenerate states differing by the
FE polarization has not been investigated thus far and may be
highly nontrivial due to potential interference effects.

To conclude, we have studied a model Hamiltonian ap-
propriate for narrow-band manganites at small Jahn-Teller
coupling using unbiased numerical techniques. We found that
the spins of the 2D system spontaneously undergo dimensional
reduction into 1D stripes for dopings 1/3, 1/4, ... Adjacent
stripes always have spins at a 90° angle, but the spins of stripes
at larger distances are not correlated. The electronic kinetic
energy, on the other hand, remains fully 2D. This indicates
that the manganite results described here induce the spins to
behave in a way analogous to the (orbital pseudo-) spins in
the so-called compass model, which is also used to describe
protected gbits. However, in contrast to the compass model, our
model Hamiltonian does not commute with the corresponding
symmetry operators, and the effect is thus an emergent property
of the ground-state manifold.
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