Iron telluride ladder compounds: Predicting the structural and magnetic properties of BaFe₂Te₃ Yang Zhang , 1,2 Ling-Fang Lin , 1,2 Adriana Moreo , 1,3 Shuai Dong, 2 and Elbio Dagotto , 1,3 * 1 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 2 School of Physics, Southeast University, Nanjing 211189, China 3 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA (Received 12 December 2019; revised manuscript received 18 March 2020; accepted 20 March 2020; published 13 April 2020) Since the discovery of pressure-induced superconductivity in the two-leg ladder system BaFe₂X₃ (X = S, Se), with the 3d iron electronic density n = 6, quasi-one-dimensional iron-based ladders have attracted considerable attention. Here, we use density-functional theory to predict that the novel n = 6 iron ladder BaFe₂Te₃ could be stable with a similar crystal structure as BaFe₂Se₃. Our results also indicate that BaFe₂Te₃ will display a complex 2×2 block-type magnetic order. Due to the magnetic striction effects of this block order, BaFe₂Te₃ should be a magnetic noncollinear ferrielectric system with a net polarization $0.31 \ \mu\text{C/cm}^2$. In general, the similar electronic density and magnetic ground state of Te- and Se-based ladders indicates both should display similar properties. In particular, the physical and structural similarity with BaFe₂Se₃ suggests that BaFe₂Te₃ could become superconducting under high pressure. # DOI: 10.1103/PhysRevB.101.144417 #### I. INTRODUCTION Since the initial discovery of superconductivity in fluorine-doped two-dimensional (2D) iron square lattices LaFeAsO, iron-based compounds have rapidly developed into one of the most important branches of unconventional superconductors in condensed-matter physics and materials science [1–4]. In the nonsuperconducting parent compounds, their magnetic ground state is known as collinear stripe order, i.e., the so-called C-type antiferromagnetic (AFM) order, with some exceptions such as block types and bicollinear types [3–6]. Since most superconducting phases always emerge next to the suppression of antiferromagnetism by carrier doping or pressure, the AFM order and AFM spin fluctuations are considered to be important for superconductivity [7,8]. Recently, pressure-induced superconductivity was observed in the two-leg quasi-one-dimensional ladder system BaFe₂ X_3 (X = S, Se) with electronic density n = 6.0[9,10], researching high-temperature iron-based superconductors [11-21]. BaFe₂S₃ displays a stripe-type (CX) AFM order, similar to other 2D iron-based superconductors, below 120 K [9,15]. By applying hydrostatic pressure, this system displayed an insulator-metal transition [16,22] and superconductivity was observed at $P \sim 11$ GPa near a first-order magnetic phase transition where the AFM order was suppressed [9,23]. These recent developments in the context of two-leg iron ladders remind us of the previous results for copper ladders where superconducting tendencies upon doping were theoretically predicated and later confirmed experimentally [24–26]. In fact, in iron ladders, similar pairing tendencies were observed upon hole doping by theoretical research based on density-matrix renormalization group (DMRG) at intermediate Hubbard coupling strengths [13,17]. Another possible explanation of superconductivity relies on bandwidth controlled by pressure [9]. BaFe₂Se₃ also shows pressure-induced superconductivity [10,20], but in addition it displays an exotic 2×2 blocktype magnetic order below 256 K under ambient conditions [27]. Due to its enhanced degree of electronic correlation [28,29], the physical properties of BaFe₂Se₃ become more complex. For example, the existence of an orbital-selective Mott phase (OSMP) was found by neutron experiments at ambient pressure [30]. This OSMP of BaFe₂Se₃ was theoretically discussed based on DMRG methods by using multiorbital Hubbard models as well [31-33]. However, an additional striking experimental discovery was recently reported for this interesting material: The existence of a polar state with possible polar orbital ordering was confirmed by neutron diffraction methods combined with optical second-harmonicgeneration signals [34]. In fact, this material was first theoretically predicted to be multiferroic because the block-type magnetic order can produce displacements of Se inducing broken inversion symmetry [35]. It should be noted that BaFe₂Se₃ is the first reported iron-based system to become both superconductor and multiferroic. Moreover, the polar state of BaFe₂Se₃ is an exotic noncollinear ferrielectric (FiE) phase instead of a plain ferroelectric (FE) one [34,35]. To our best knowledge, noncollinear FiE order was only proposed in a few compounds, such as MO_2X_2 (M = Mo/W, X = Br/Cl) [36] and strained BiFeO₃ [37]. It is reasonable to assume that finding this exotic 2×2 block-type magnetic order with quasione-dimensional ladders defines an effective feasible path to explore FiE materials. Besides, considering the similar atomic average electronic density in many iron superconductors, it is conceivable to obtain the superconducting phase in other potential n = 6 ladders as well. ^{*}Corresponding author: edagotto@utk.edu However, to our best knowledge, there is no other iron ladder reporting to display the 2×2 block-type magnetic order. According to our previous Hartree-Fock [38] and density-functional theory (DFT) calculations [21], the block type was expected to be stable in a large region of the Hund coupling J_H and Hubbard U phase diagram in n=6 iron ladders. Hence, it can be reasonably assumed that the magnetic ground state of n=6 Te-based iron ladders, not synthesized yet, may also display the block-type order if it can be prepared. Actually, the n=5.5 iron Te-based ladder was synthesized in experiments [39] but it was recently predicted to display CX-type magnetic order [21]. Considering that the ionic radius of Rb⁺ (\sim 1.47 Å) and Ba²⁺ (\sim 1.434 Å) are similar, we believe it should be possible to prepare Te-based n=6 iron ladders with chemical formula BaFe₂Te₃. In the present paper, we performed first-principles DFT calculations for the $BaFe_2Te_3$ system. Our theoretical results indicate that $BaFe_2Te_3$ should be stable with a similar crystal structure as $BaFe_2Se_3$. Because in the past, DFT has successfully predicted many new compounds before they were truly prepared, such as blue phosphorene [40] and phosphorus carbide [41,42], our structural prediction should be reliable. Moreover, the 2×2 block-type spin order is also predicted to be the most likely magnetic ground state in our calculations for this compound. In addition, we found that $BaFe_2Te_3$ should display noncollinear FiE order driven by the 2×2 block-type magnetic order via magnetic exchange striction. The magnetic state and electronic structure similarity with $BaFe_2Se_3$ further suggests that $BaFe_2Te_3$ could also become superconducting under high pressure. ### II. METHOD To understand the physical properties of the $BaFe_2Te_3$ system, first-principles DFT calculations were performed based on the projector-augmented wave (PAW) pseudopotentials with the Perdew-Burke-Ernzerhof (PBE) exchange functional, as implemented in the VIENNA AB INITIO SIMULATION PACK-AGE code [43–46]. Since the spin-polarized PBE-GGA function is known to provide an accurate description of the iron-based 123-type two-leg ladder systems [12,16,19,20,22], in this paper we do not add an additional Hubbard U. Due to the quasi-one-dimensional ladder structure, the magnetic coupling in-ladder should be the dominant factor affecting the energies and physical properties. Various possible (in-ladder) magnetic configurations were imposed on the iron ladders [21] [see Fig. 1(e)] to predict the magnetic properties, such as nonmagnetic (NM), ferromagnetic (FM), CX types with FM rungs and AFM legs, CY type with AFM rungs and FM legs, G type with both AFM rungs and legs, and 2×2 magnetic block types. Considering previous neutron results for two-leg iron ladders [9,27], the $(\pi, \pi, 0)$ order was adopted for the CX-AFM and block-AFM orders. The planewave cutoff energy was 500 eV. Since different magnetic configurations have different minimal unit cells, the mesh was appropriately modified for all the candidates to render the k-point densities approximately the same in reciprocal space (as example, $7 \times 5 \times 11$ for the FM type). In addition, we have tested that these k-point meshes already lead to converged energies when compared with denser meshes. Both FIG. 1. (a)–(d) Schematic crystal structure of BaFe₂Te₃ (electronic density n=6) with the conventions green = Ba, blue = Fe, dark yellow = Te. For better comparison, we used the space group Pbmm instead of the conventional Pnma since the lattice vectors of the Pbnm space group are the same as in the Cmcm space group. Note that the difference between Pbnm and Pnma space groups is only regarding the choice of a unique axis. (a), (b) Sketch of the possible crystal structures of BaFe₂Te₃ for the Cmcm (No. 63) and Pbnm (No. 62) phases, respectively. (c), (d) One iron ladder with highlighted FeTe₄ tetrahedra for the Cmcm and Pbnm phases, respectively. (e) Sketch of possible antiferromagnetic magnetic configurations in each ladder. Spin up and spin down are distinguished by different colored balls. The figure is reproduced from a previous paper [21]. the lattice constants and atomic positions were fully relaxed with different spin configurations until the Hellman-Feynman force on each atom was smaller than $0.01~{\rm eV/\AA}$. The phonon spectra was calculated using the finite displacement approach and analyzed by the PHONONPY software [47,48]. Furthermore, to estimate the FE polarization, the Berry phase method was adopted [49,50]. In addition TABLE I. The optimized lattice constants (Å), local magnetic moments (in μ_B /Fe units) within the default PAW sphere, and band gaps (eV) for the various magnetic configurations using the *Cmcm* structure. Also included are the energy differences (meV/Fe) with respect to the block-B AFM configuration in the *Pbnm* phase, taken as the reference of energy. All the magnetic states discussed here were fully optimized starting from the *Cmcm* or *Pbnm* structure, respectively. | Space group | Magnetic configuration | a/b/c | M | Gap | Energy | |-------------|------------------------|--------------------|------|------|--------| | Cmcm | NM | 9.738/11.991/5.672 | 0 | 0 | 385.8 | | | FM | 9.805/13.195/5.634 | 2.92 | 0 | 155.7 | | | CX | 9.805/12.825/5.703 | 2.60 | 0 | 84.3 | | | CY | 9.756/13.214/5.630 | 2.77 | 0.22 | 61.8 | | | G | 9.799/12.812/5.682 | 2.54 | 0 | 160.7 | | | Block A | 9.837/13.203/5.632 | 2.87 | 0.17 | 44.0 | | | Block B | 9.823/13.131/5.652 | 2.85 | 0.3 | 24.9 | | Pbnm | NM | 9.177/12.200/5.658 | 0 | 0 | 385.2 | | | FM | 9.852/13.397/5.532 | 2.90 | 0 | 125.4 | | | CX | 9.729/13.131/5.652 | 2.63 | 0.05 | 56.6 | | | CY | 9.894/13.178/5.590 | 2.79 | 0.23 | 51.5 | | | G | 9.840/12.852/5.643 | 2.46 | 0.06 | 140.3 | | | Block A | 9.806/13.424/5.577 | 2.86 | 0.26 | 3.1 | | | Block B | 9.824/13.182/5.615 | 2.85 | 0.32 | 0 | to the standard DFT calculation discussed thus far, the maximally localized Wannier function method was employed to fit Fe 3*d*'s five bands by using the WANNIER90 packages [51]. ### III. RESULTS #### A. Crystal structure As shown in Fig. 1, we constructed two crystal structures [Cmcm (No. 63) and Pbnm (No. 62) phases for BaFe₂Te₃. because those two types of phases were found experimentally in other 123-type iron ladders [27,52]. In the *Cmcm* phase [see Fig. 1(a)], the FeTe₄ tetrahedra are aligned in the *ac* plane. The *Pbnm* phase [see Fig. 1(b)] can be visualized as adding a tilting of the FeTe₄ tetrahedra along the c axis on the Cmcm phase of BaFe₂Te₃, while the two FeTe₄ tetrahedra along the rung direction are rotated counterclockwise/clockwise, respectively. As a consequence, as shown in Figs. 1(c)-1(d), the iron ladder would slightly distort with two different ironiron distances along the leg direction in the Pbnm phase while the iron-iron distances are equal in the ideal *Cmcm* ladder. By comparing the energies of the two phases with a NM state, the Pbnm phase was considered to be the most likely crystal structure of BaFe₂Te₃ (~1.3 meV/f.u. lower than Cmcm phase) after the lattice constants and atomic positions were fully relaxed. However, note that the energy difference of the two phases for the NM state are quite small and this issue will be discussed in the next section. For completeness, starting from the crystal lattice with *Cmcm* (No. 63) and *Pbnm* (No. 62) symmetry plus various magnetic states, the different spin configurations were fully relaxed. The DFT results indicate that the crystal structure of BaFe₂Te₃ should be similar to BaFe₂Se₃ instead of BaFe₂S₃. In the nontilting ladder structure, all the energies of different magnetic configurations were higher than the corresponding energies of the tilting ladder structure [see Table I]. Hence, we conclude that the *Pbnm* (No. 62) phase should be the favored structure of BaFe₂Te₃. #### **B.** Stability As shown in Figs. 2(a) and 2(b), there is a small imaginaryfrequency branch in the phonon spectrum of the Cmcm structure of BaFe₂Te₃, which will lead to spontaneous distortions. By removing the unstable phonon modes, the symmetry decreases from Cmcm to Pbnm. This small imaginary-frequency issue also corresponds to the small energy difference between the Cmcm and Pbnm phases. According to group theory analysis using the AMPLIMODES software [53,54], this spontaneous distortion mode is a Y^{2+} mode. For comparison, the phonon spectrum of the Pbnm structure of BaFe₂Te₃ is displayed in Figs. 2(c) and 2(d), which is dynamically stable (no unstable modes). Furthermore, we also investigated the elastic-stability conditions that indicated the *Pbnm* structure of BaFe2Te3 should be elastically stable. Moreover, based on the optimized structure for the block-B AFM magnetic order, we calculated the phonon spectrum corresponding to this magnetic state. The results indicate that this magnetic ground state is also stable, as shown in Fig. 2(e). The elastic matrix of BaFe₂Te₃ has nine nonzero independent matrix elements (C_{11} , C_{12} , C_{13} , C_{22} , C_{23} , C_{33} , C_{44} , C_{55} , C_{66}) due to the *mmm* Laue class features of the *Cmcm* space group (No. 63) and *Pbnm* space group (No. 62) [55]. These values of the elastic matrix constants C_{ij} 's satisfy the Born stability criteria for an orthorhombic system [55]. We calculated the elastic matrix for both *Cmcm* and *Pbnm* phase as summarized in Table II. TABLE II. The calculated elastic matrix elements (C_{ij} , in units of Gpa) corresponding to BaFe₂Te₃ for the *Cmcm* and *Pbnm* phases. | | C_{11} | C_{12} | C_{13} | C_{22} | C_{23} | C_{33} | C_{44} | C_{55} | C_{66} | |--------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | No. 63 | 48.4 | 21.1 | 30.8 | 34.3 | 28.2 | 90.8 | 15.3 | 23.5 | 12.9 | | No. 62 | 48.8 | 23.7 | 29.1 | 38.8 | 27.4 | 88 | 15.7 | 23.1 | 13.9 | FIG. 2. (a)–(d) Phonon spectrum of BaFe₂Te₃ (electronic density n=6) for NM state. The coordinates of the high symmetry points in the bulk Brillouin zone (BZ) are given by $\Gamma=(0,0,0)$, X=(0.5,0,0), S=(0.5,0.5,0), Y=(0,0.5,0), Y=(0,0.5,0), Y=(0,0.5,0), Y=(0,0.5,0.5), Y=(0,0.5,0.5), Y=(0,0.5,0.5), Y=(0,0.5,0.5), Y=(0,0.5,0.5), Y=(0.5,0.5), Y=(0.5,0.5) The necessary and sufficient Born criteria for an orthorhombic system are the following [55]: - (1) The matrix C is definite positive. - (2) All eigenvalues of C are positive. - (3) All the leading principal minors of C (determinants of its upper-left $k \times k$ submatrix, $1 \le k \le 6$) are positive. $$C_{11} > 0, \quad C_{11}C_{22} > C_{12}^2,$$ (1) $$C_{11}C_{22}C_{33} + 2C_{12}C_{13}C_{23} - C_{11}C_{23}^2 - C_{22}C_{13}^2 - C_{33}C_{12}^2 > 0,$$ (2) $$C_{44} > 0, \quad C_{55} > 0, \quad C_{66} > 0,$$ (3) $$C_{ii} + C_{jj} - 2C_{ij} > 0. (4)$$ As a consequence, BaFe₂Te₃ should be elastically stable. ## C. Magnetism Previous studies of iron-based superconductors suggest that in the parent compound they all ordered magnetically. FIG. 3. (a) Sketch of block-A and block-B spin patterns studied here. Spin up and down are represented by blue and brown circles, respectively. The A and B red labels are different ladders located in different layers. The two tellurium sites denote locations above and below the iron plane defined by hollow and solid circles, respectively. (b) The density of states near the Fermi level based on the block-B states $(\pi, \pi, 0)$ for BaFe₂Te₃. Blue: Ba; red: Fe; green: Te. (c) The density of state near Fermi level based on the block-B states $(\pi, \pi, 0)$ for BaFe₂Se₃. Blue: Ba; red: Fe; green: Se. Then, our next task is to understand the magnetic ground state of the here predicted new Te-based ladder. For this purpose, various possible (in-ladder) magnetic arrangements were tried [see Fig. 1(e)]. Considering previous neutron-based studies for BaFe₂Se₃ [27], the two possible block-AFM orders that were tried here are shown in Fig. 3(a). Our main results for BaFe₂Te₃ are summarized in Table I. Under ambient conditions, our results indicate that the block-B AFM order is the most stable ground-state magnetic order among all the candidates considered here. For the block-B AFM state, the calculated local magnetic moment of Fe is 2.85 μ_B /Fe, quite close to the value observed experimentally and theoretically for BaFe₂Se₃ [20,27]. The calculated energy gap of the block-B AFM order is about 0.32 eV, which is slightly smaller than the calculated value of BaFe₂Se₃ [20,35]. Moreover, BaFe₂Te₃ could become metallic under high pressure after considering previous DFT calculations and experiments for related ladders [9,10,16,20]. A structural phase transition in the case of BaFe₂Se₃ was found under pressure, with the tilting ladders becoming nontilting, corresponding to a transition from the *Pbnm* symmetry to an ideal *Cmcm* symmetry [20,52]. Hence, in principle, BaFe₂Te₃ should also display a structural phase transition under pressure although this aspect requires further detailed calculations beyond the scope of this paper. According to the calculated density of states (DOS) for the block-B $(\pi, \pi, 0)$ AFM order [see Fig. 3(b)], the bands near the Fermi level are primarily contributed by Fe-3d orbitals which are highly hybridized with Te-5p orbitals. The total bandwidth of the iron bands corresponding to the magnetic ground state of BaFe₂Te₃ (~7 eV) is slightly smaller than the bandwidths of BaFe₂S₃ (\sim 8 eV) [21] and BaFe₂Se₃(\sim 7.6 eV) [56] [see Fig. 3(c)]. This suggests that the degree of electronic correlation effects of the Te-based ladders should be similar to other iron n = 6 ladders, although only explicit calculations of the Hubbard and Hund couplings, both important in multiorbital systems, can confirm this assumption. Because many believe that the block-type magnetic order of BaFe₂Se₃ is related to an orbital selective Mott state induced by electronic correlations [27,31–33], it is reasonable to conclude that BaFe₂Te₃ could also display this interesting state as well. Of course, more powerful many-body techniques based on multiorbital Hubbard models are required to confirm this OSMP hypothesis. ### D. Ferrielectricity Due to magnetic-exchange striction effect, the block spin configuration will break parity symmetry but will not break space-inversion symmetry in the iron ladder. However, as shown in Fig. 4(a), the displacements of the Te atoms would break space-inversion symmetry. This will induce local FIG. 4. (a) Sketch of the Fe-Te ladders A and B with block AFM order. Partial Te atomic displacements induced by the exchange striction effect of the Block order of Fe. (b) Vector of polarizations of the different ladders A and B, as well as the net polarization. (c) Sketch of one ladder with the optimized bock-B AFM order of BaFe₂Te₃, showing the NN spin up-up (or down-down) and NN spin up-down Fe-Fe distances. (d) Sketch along ladder B of the optimized block-B AFM order of BaFe₂Te₃. The different heights of Te are marked h_1 and h_2 , respectively. FIG. 5. (a) Sketch of Fe-Te ladder A with π -phase shift of block AFM order. Partial Te ionic displacements moved down, which is induced by the exchange striction effect of block order of Fe. (b), (c) The electronic density difference (BaFe₂Se₃ minus BaFe₂Te₃). (b) The Te-Fe-Te-Fe bonds plane. (c) The iron ladder plane. dipoles for each iron ladder since irons would move in the same direction perpendicular to the ladder's plane. Due to the phase difference between the A and B ladders in the block-B AFM state of BaFe₂Te₃, the induced polarization of each ladder is, in principle, opposite. However, there will be a remaining net polarization along the *a* axis since the ladders A and B are slightly tilting, as displayed in Fig. 4(b). This conclusion is also supported by group theory analysis [57]. It should also be noticed that the π -phase shift will not change the direction of P. Although there is a π -phase shift in each AA/BB ladder plane for the block-A AFM $(\pi, \pi, 0)$ order, the movements of Te atoms, induced by the block order, are all in the same direction as shown in Fig. 5(a). In our fully optimized crystal structure of block-B AFM order of BaFe₂Te₃, the nearest-neighbor (NN) distances of spin up-up [or down-down] Fe-Fe are $d_1 = 2.583 \,\text{Å}$ and $d_2 = 2.594 \,\text{Å}$, and the NN distances of spin up-down Fe-Fe are $d_3 = 3.031 \,\text{Å}$ and $d_2 = 3.020 \,\text{Å}$, as displayed in Fig. 4(c). Meanwhile, our DFT results indicate that the heights of Te(1) and Te(2) are different: 1.987 Å and 1.454 Å, respectively, which is in agreement with our symmetry and group analysis mentioned in the previous paragraph. Those numerical results show that the FE dipole of BaFe2Te3 would be larger than the value of BaFe₂Se₃ by comparing the height difference of different chalcogens (for Te: $\Delta h \sim 0.53$ Å, while for Se: $\Delta h \sim 0.22 \,\text{Å}$ [35]). The calculated P of BaFe₂Te₃ is about 0.31 μ C/cm², which is larger than the value for BaFe₂Se₃ $(0.19 \,\mu\text{C/cm}^2)$ [35]. The FiE polarization is directly proportional to the effective ionic charge and relative displacement from paraelectric state, and inversely proportional to volume. Although the difference in distance of the heights of Te is more than twice that of the heights of Se, the value of the polarization of BaFe₂Te₃ is not twice as large as that of BaFe₂Se₃. This is because we also have to consider that the effective ionic charge within chalcogenides decreases from Se to Te, while the volume of BaFe₂Se₃ is smaller than Ba₂Fe₂Te₃. We present the electronic density difference between BaFe₂Se₃ and BaFe₂Te₃ in Figs. 5(b) and 5(c). It is clearly shown that the Se anions with bright red spheres attract more electrons than the Te anions, while the dark blue negative electronic density difference in the iron ladder plane indicates that the Fe cations lost electrons in the case of Se as compared with the BaFe₂Te₃ system. Overall, this suggests that the electronegativity of Te is weaker than Se. More importantly, because the ladders for each layer are tilted in different directions, the corresponding induced FE dipoles would correspond to a noncollinear order as shown in Fig. 4(b). Its noncollinearities may be easily modulated by external electric fields. If we only consider the exchange striction without magnetic order, the space group of our fully relaxed FiE structure is $Pnm2_1$ (No. 31), which is consistent with recent neutron experiments for BaFe₂Se₃ [34]. #### IV. ADDITIONAL DISCUSSION In Fig. 6(a), we present the projected band structure of the fully optimized NM states for the five iron 3d orbitals corresponding to BaFe2Te3. For better understanding, we changed the lattice vectors of the Pbnm space group to the conventional Pnma space group where the b axis is along the ladder direction, the c axis is perpendicular to the ladders but still in the iron layer, and the a axis is perpendicular to the iron layer. It is clearly shown that the band structure is more dispersive along the ladder direction (X - S path) than other directions, which indicates the quasi-one-dimensional ladder behavior along the k_y axis. Near the Fermi level, the bands are mainly contributed by d_{xz} , d_{yz} , and $d_{3z^2-r^2}$ [note that the cartesian axes correspond to the lattice axis of *Pnma* symmetry [28]; i.e., the x axis is a, y axis is b, and z axis is c in Fig. 1(b)]. Based on the Wannier fitting results, the bandwidth of the five iron orbitals is about 4.1 eV, as shown in Fig. 6(b). Since the crystal constants of the fully optimized NM state are usually smaller than the experimental lattice constants in iron ladder systems, the "real" noninteracting bandwidth of the five iron orbitals would be smaller than this value. To better understand the electronic correlation of BaFe₂Te₃ and the electronic structural similarity with BaFe₂Se₃, we display the electronic structure of BaFe₂Se₃ for the fully optimized NM phase in Fig. 7. In BaFe₂Se₃, the band structure is quite FIG. 6. (a) Projected band structures of BaFe₂Te₃ (electronic density n=6) for the nonmagnetic (NM) state. The Fermi level is shown with dashed lines. The weight of each iron orbital is represented by the size of the circle. (b) The original band dispersion is shown by blue solid lines, while the Wannier interpolated band dispersion is shown using green dashed curves for BaFe₂Te₃. The coordinates of the high symmetry points in bulk BZ are given by $\Gamma=(0,0,0)$, Z=(0,0,0.5), T=(-0.5,0.5,0.5), Z=(-0.5,0.5,0.5), Z=(-0.5,0.5,0.5). similar to BaFe₂Te₃ because the Fermi levels are also mainly contributed by d_{xz} , d_{yz} , and $d_{3z^2-r^2}$ orbitals. As shown in Fig. 7(b), the bandwidth of the 123-Se n=6 ladder for the optimized NM structure is about 4.5 eV. Considering the similar bandwidth and band structure with BaFe₂Se₃, it is reasonable to assume that electronic correlation effects would be as interesting in Te-based ladders as they are in Se-based ladders The vast majority of reported 2D iron superconductors [1–4] display a similar structural lattice, magnetic ground state, and electronic structure. Then, it is reasonable that according to our DFT results, the physical and structural properties of our predicted BaFe₂Te₃ are very similar to those of BaFe₂Se₃. The BaFe₂S₃ has a CX-type AFM order at ambient conditions, and the superconducting transition temperature of BaFe₂Se₃ is higher than BaFe₂Se₃ (the 2×2 block-type AFM order). It suggests that BaFe₂Te₃ could also become superconducting under pressure although with a lower FIG. 7. (a) Projected band structures of BaFe₂Se₃ (electronic density n=6) for the nonmagnetic (NM) state. The Fermi level is shown with dashed lines. The weight of each iron orbital is represented by the size of the circle. (b) The original band dispersion is shown by blue solid lines, while the Wannier interpolated band dispersion is shown using green dashed curves for BaFe₂Se₃. The coordinates of the high symmetry points in bulk BZ are given by $\Gamma=(0,0,0), Z=(0,0,0.5), T=(-0.5,0.5), X=(-0.5,0.5), S=(-0.5,0.5,0.5), Y=(0,0.5,0.5), U=(0,0.5,0.5), R=(-0.5,0.5,0.5).$ transition temperature than BaFe₂S₃ because our 123-Te ladder is very similar to BaFe₂Se₃ which has a lower critical temperature than the 123-S ladder. Since the pressure-induced superconducting phase domes of iron ladders were found near the AFM phase [9,10], it is reasonable to assume that the driving force of superconductivity are the AFM spin fluctuations [12,20]. The block AFM order of BaFe₂Se₃ was considered to possibly change to the stripe CX-AFM structure due to a structural transition under pressure [10,20]. In this scenario, the magnetic fluctuations of BaFe₂Se₃ were considered to be induced by the competition between block- and CX-type magnetic orders, while the magnetic fluctuations of BaFe₂S₃ were attributed entirely to the CX-type AFM order. Hence, it is reasonable to assume that the competition between block and CX-type magnetic order would be the driving force for superconductivity in high-pressured BaFe₂Te₃ as well. It should also be noted that, in previous 2D iron superconductors, the d_{xy} orbital was considered to be very important to understand the transition temperature [58,59], corresponding to our d_{yz} orbital lying in the iron ladder plane. This issue deserves to be studied more in depth by powerful many-body techniques, beyond the capabilities of the DFT calculations. #### V. CONCLUSION In summary, the two-leg iron ladder compound BaFe₂Te₃, with the iron density n = 6 was systematically studied by using first-principles calculations. The block-B type AFM state is here predicted to be the most likely magnetic ground state. Considering the exotic Block order and strong correlation in this n = 6 iron Te ladder, the phenomenon of OSMP is expected. In addition, using the symmetry analysis and DFT calculations, the presence of noncollinear ferrieletricity in BaFe₂Te₃ is here predicted as induced by the magnetic exchange striction effects of the block order. Moreover, considering the magnetic state similarity and electronic structure with other iron ladders, BaFe₂Te₃ may become superconducting under higher pressure. Our overarching conclusion is that the n = 6 iron Te ladder is worth being studied by theoretical and experimental procedures because using Te could lead to interesting results, such as exotic magnetic states, an OSMP, noncollinear ferrieletricity, as well as superconductivity under high pressure. ## ACKNOWLEDGMENTS E.D. and A.M. were supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. S.D., Y.Z., and L.-F.L. were supported by the National Natural Science Foundation of China (Grants No. 11834002 and No. 11674055). L.-F.L. and Y.Z. were supported by the China Scholarship Council. Y.Z. was also supported by the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBPY1826). Most calculations were carried out at the Advanced Computing Facility (ACF) of the University of Tennessee Knoxville (UTK). ^[1] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011). ^[2] D. C. Johnston, Adv. Phys. 59, 803 (2010). ^[3] E. Dagotto, Rev. Mod. Phys. 85, 849 (2013). ^[4] P. C. Dai, Rev. Mod. Phys. 87, 855 (2015). ^[5] W. Li, H. Ding, P. Deng, K. Chang, C. L. Song, K. He, L. L. Wang, X. C. Ma, J. P. Hu, X. Chen, and Q. K. Xue, Nat. Phys. 8, 126 (2012). ^[6] Y. Zhang, H. M. Zhang, Y. K. Weng, L. F. Lin, X. Y. Yao, and S. Dong, Phys. Status Solidi RRL 10, 757 (2016). ^[7] P. C. Dai, J. P. Hu, and E. Dagotto, Nat. Phys. **8**, 709 (2012). ^[8] I. I. Mazin and M. D. Johannes, Nat. Phys. 5, 141 (2009). ^[9] H. Takahashi, A. Sugimoto, Y. Nambu, T. Yamauchi, Y. Hirata, T. Kawakami, M. Avdeev, K. Matsubayashi, F. Du, C. - Kawashima, H. Soeda, S. Nakano, Y. Uwatoko, Y. Ueda, T. J. Sato, and K. Ohgushi, Nat. Mater. 14, 1008 (2015). - [10] J.-J. Ying, H. C. Lei, C. Petrovic, Y.-M. Xiao, and V.-V. Struzhkin, Phys. Rev. B 95, 241109(R) (2017). - [11] T. Yamauchi, Y. Hirata, Y. Ueda, and K. Ohgushi, Phys. Rev. Lett. **115**, 246402 (2015). - [12] R. Arita, H. Ikeda, S. Sakai, and M.-T. Suzuki, Phys. Rev. B 92, 054515 (2015). - [13] N. D. Patel, A. Nocera, G. Alvarez, R. Arita, A. Moreo, and E. Dagotto, Phys. Rev. B 94, 075119 (2016). - [14] M. Wang, M. Yi, S. J. Jin, H. C. Jiang, Y. Song, H. Q. Luo, A. D. Christianson, C. de la Cruz, E. Bourret-Courchesne, D. X. Yao, D. H. Lee, and R. J. Birgeneau, Phys. Rev. B 94, 041111(R) (2016) - [15] S. X. Chi, Y. Uwatoko, H. B. Cao, Y. Hirata, K. Hashizume, T. Aoyama, and K. Ohgushi, Phys. Rev. Lett. 117, 047003 (2016). - [16] Y. Zhang, L. F. Lin, J. J. Zhang, E. Dagotto, and S. Dong, Phys. Rev. B 95, 115154 (2017). - [17] N. D. Patel, A. Nocera, G. Alvarez, A. Moreo, and E. Dagotto, Phys. Rev. B 96, 024520 (2017). - [18] J. M. Pizarro and E. Bascones, Phys. Rev. Mater. 3, 014801 (2019). - [19] L. Zheng, B. A. Frandsen, C. Wu, M. Yi, S. Wu, Q. Huang, E. Bourret-Courchesne, G. Simutis, R. Khasanov, D.-X. Yao, M. Wang, and R. J. Birgeneau, Phys. Rev. B 98, 180402(R) (2018). - [20] Y. Zhang, L. F. Lin, J. J. Zhang, E. Dagotto, and S. Dong, Phys. Rev. B 97, 045119 (2018). - [21] Y. Zhang, L. F. Lin, A. Moreo, S. Dong, and E. Dagotto, Phys. Rev. B 100, 184419 (2019). - [22] M. T. Suzuki, R. Arita, and H. Ikeda, Phys. Rev. B 92, 085116 (2015). - [23] P. Materne, W. Bi, J. Zhao, M. Y. Hu, M. L. Amigó, S. Seiro, S. Aswartham, B. Büchner, and E. E. Alp, Phys. Rev. B 99, 020505(R) (2019). - [24] E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45, 5744(R) (1992). - [25] E. Dagotto and T. M. Rice, Science 271, 618 (1996); See also E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999). - [26] M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, and K. Kinoshita, J. Phys. Soc. Jpn. 65, 2764 (1996). - [27] J. M. Caron, J. R. Neilson, D. C. Miller, K. Arpino, A. Llobet, and T. M. McQueen, Phys. Rev. B 85, 180405(R) (2012). - [28] J. M. Caron, J. R. Neilson, D. C. Miller, A. Llobet, and T. M. McQueen, Phys. Rev. B 84, 180409(R) (2011). - [29] Y. Nambu, K. Ohgushi, S. Suzuki, F. Du, M. Avdeev, Y. Uwatoko, K. Munakata, H. Fukazawa, S. X. Chi, Y. Ueda, and T. J. Sato, Phys. Rev. B 85, 064413 (2012). - [30] M. Mourigal, S. Wu, M. B. Stone, J. R. Neilson, J. M. Caron, T. M. McQueen, and C. L. Broholm, Phys. Rev. Lett. 115, 047401 (2015). - [31] J. Herbrych, N. Kaushal, A. Nocera, G. Alvarez, A. Moreo, and E. Dagotto, Nat. Commun. 9, 3736 (2018). - [32] N. D. Patel, A. Nocera, G. Alvarez, A. Moreo, S. Johnston, and E. Dagotto, Commun. Phys. **2**, 64 (2019). - [33] J. Herbrych, J. Heverhagen, N. D. Patel, G. Alvarez, M. Daghofer, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 123, 027203 (2019). - [34] T. Aoyama, S. Imaizumi, T. Togashi, Y. Sato, K. Hashizume, Y. Nambu, Y. Hirata, M. Matsubara, and K. Ohgushi, Phys. Rev. B 99, 241109(R) (2019). - [35] S. Dong, J. M. Liu, and E. Dagotto, Phys. Rev. Lett. 113, 187204 (2014). - [36] L.-F. Lin, Y. Zhang, A. Moreo, E. Dagotto, and S. Dong, Phys. Rev. Lett. 123, 067601 (2019). - [37] Y. Yang, J. Íñiguez, A.-J. Mao, and L. Bellaiche, Phys. Rev. Lett. 112, 057202 (2014). - [38] Q. Luo, A. Nicholson, J. Rincón, S. Liang, J. Riera, G. Alvarez, L. Wang, W. Ku, G. D. Samolyuk, A. Moreo, and E. Dagotto, Phys. Rev. B 87, 024404 (2013). - [39] K. O. Klepp, W. Sparlinek, and H. Boller, J. Alloys Compd. 238, 1 (1996). - [40] J. Guan, Z. Zhu, and D. Tománek, Phys. Rev. Lett. 113, 046804 (2014). - [41] J. Guan, D. Liu, Z. Zhu, and D. Tománek, Nano Lett. 16, 3247 (2016). - [42] W. C. Tan, Y. Cai, R. Ng, L. Huang, X. Feng, G. Zhang, Y.-W. Zhang, C. A. Nijhuis, X. Liu, and K.-W. Ang, Adv. Mater. 29, 1700503 (2017). - [43] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). - [44] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). - [45] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). - [46] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). - [47] L. Chaput, A. Togo, I. Tanaka, and G. Hug, Phys. Rev. B 84, 094302 (2011). - [48] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015). - [49] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993). - [50] R. Resta, Rev. Mod. Phys. 66, 899 (1994). - [51] A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Phys. Commun. 178, 685 (2007). - [52] V. Svitlyk, D. Chernyshov, E. Pomjakushina, A. Krzton-Maziopa, K. Conder, V. Pomjakushin, R. Pöttgen, and V. Dmitriev, J. Phys.: Condens. Matter 25, 315403 (2013). - [53] D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Cryst. 42, 820 (2009). - [54] J. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Acta Cryst. A 66, 558 (2010). - [55] F. Mouhat and F.-X. Coudert, Phys. Rev. B 90, 224104 (2014). - [56] Based on the previously optimized magnetic ground state of BaFe₂Se₃ [20], we calculated the DOS for the block-B AFM $(\pi, \pi, 0)$ magnetic order. - [57] Using the crystal lattice plus the block-B AFM order, the magnetic space group became Cc (No. 9) after fully relaxing the structure. The corresponding point group of the fully relaxed block-B AFM state is m. A nonzero polarization P is allowed in this polar point group. - [58] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011). - [59] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).